Technical
Documentation

e Technical Documentation API
e SDK documentation Android

e SDK documentation iOS



Technical Documentation
API

Money Transfer Hub provides possibility to process Person-2-Person and Person-2-Merchant
transactions in various forms. Please check details in the below documentation.

This documentation contains the methods for mobile-server integration. The methods
included in the documentation are intended for Customers creating their own mobile SDK.

The Customer creating the SDK must also remember about the integration with the MobileDC

component

Documentation for the server-to-server integration is available here but is deprecated.

Receiver types which can be used
to set Receiver.Type

Based on ReceiverType user can fill different field in Receiver object in requests.

ReceiverType Description
BARE_CARD_NUMBER Bare card number in Receiver.card field
FRIEND_ID Should pass Friendld in Receiver.Card field

Should pass DataCoreCardld to Receiver.Card field and

WALLET CARD ID
- - UserDataCoreCardld to Receiver.userld field

Means that the receiver have the same card data like

EMPTY . .
sender. This type may be useful on Determine Currency

JWE


https://developer.verestro.com/books/user-lifecycle-card-management-api-sdk
https://p2ptransactions.upaidtest.pl/docs/index.html

Peer To Peer Transaction Service supports encryption of requests and responses as standard JSON
Web Encryption (JWE) per RFC 7516.

Recommended to read the JWE standard: RFC 7516.

Methods that support request encryption in the JWE standard are tagged in the documentation with
the header: Content-Type:application/x-jwe-encryption-body+json. If the response is to be
encrypted with the JWE standard then the header must be added: X-Encryption-Public-Key with the
public key.

Processing requests and responses can be divided into 4 options listed below:

1. Base request —» Base response - the following headers should be provided to pass this
case:
e Content-Type: application/json
2. Base request - Encrypted response - the following headers should be provided to pass
this case:
e Content-Type: application/json
3. Encrypted request —» Base response - the following headers should be provided to pass
this case:
e Content-Type: application/x-jwe-encryption-body+json
4. Encrypted request = Encrypted response - the following headers should be provided to
pass this case:
e Content-Type: application/x-jwe-encryption-body+json

Overview

JWE represents encrypted content using JSON data structures and Base64 encoding. The
representation consists of three parts: a JWE Header, a encrypted payload, and a signature. The
three parts are serialized to UTF-8 bytes, then encoded using base64url encoding. The JWE's
header, payload, and signature are concatenated with periods (.).

JWE typically takes the following form:

{Base64 encoded header}. {Base64 encoded payload}. {Base64 encoded signature}
JWE header contains:

Type Value Constraints Description


https://datatracker.ietf.org/doc/html/rfc7516

alg

enc

typ

iat

kid

RSA-OAEP-256

A256GCM

JOSE

1637929226

5638742a5094327fcd7a59
45d06a45a9d83e9006

Payload Encryption

Required

Required

Optional

Optional

Optional

Identifies the cryptographic
algorithm used to secure
the JWE Encrypted Key.
Supported algorithms:
RSA-OAEP-256, RSA-
OAEP-384, RSA-OAEP-
512. Recommend value:
RSA-OAEP-256.

Identifies the cryptographic
algorithm used to secure
the payload. Supported
algorithms: A128GCM,
A192GCM, A256GCM,
A128CBC-HS256,
A192CBC-HS384,
A256CBC-HS512.
Recommend value:
A256GCM.

Identifies the type of
encrypted payload.
Recommend value: JOSE.

Identifies the time of
generation of the JWT
token. Supported date
format: unix time in UTC. In
the case of iatsend, the
validity of JWE is validated.
Recommend send the
header due to the increase
in the security level.

Identifies the public key of
use to encrypt payload.
Supported format: SHA-1
value of the public key. In
the case of kid send, the
validity of public key is
validated, so we can inform
the client that the public
key has changed.

Every encrypted request should include JWE token. The jwe token should be passed in the field:

value.

In case of problems with the implementation of JWE, please contact the administrator.

To prepare the encrypted payload:

The steps may differ depending on the libraries used.



1. Get the public key using the method: [???](#Get publicKey). The public key is encoded
with Base64.

Decode the public key.

Then create a correct object to be encrypted.

Encrypt the created object with the public key.

Create JWE header compatible with: JWE Header
Make a request on the method that supports JWE. Set the JWE token in the field: value.

Methods supporting JWE use the following header: Content-Type:application/x-jwe-
encryption-body+json.

o v A~ wWwN

Payload Decryption

To prepare the decrypted payload:
The steps may differ depending on the libraries used.

The cryptographic algorithm used to secure the payload is: A256GCM, while to secure the
encrypted JWE key: RSA-OAEP-256.

1. For the response to be encrypted you need to send public key in the header: X-Encryption-
Public-Key. The header value must be encoded Base64.

2. After receiving the response, you should get the JWE token from the field: value.

3. Decrypt the JWE token from the field: value with the private key.

Public key format to be encoded in Base64.

P2P

Every single method should contains Authorization and Mobile-Product headers.

Active Accounts

Method used to find users with valid mc card type (not expired, strong verified). Response will
contain phone numbers with user and card identifiers. Users without accepted TOS or without valid
MC card will not be returned in response. If user has multiple cards that match criteria response



will contain only user’s default card id.

Request

Request headers

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description
. Mobile . Device token with "Mobile "
Authorization Required i
bG9naW46YWNrbWU= prefix
Product-Name TestProduct Required Application product name

Header must be present if

application/x-jwe- . the request body is
Content-Type . . Optional .
encryption-body+json encrypted using the JWE

standard.

Header must be present if
the response body is to be

X-Encryption-Public-Key Optional encrypted using the JWE
standard. Public key must
be encoded Base64.

Request fields

Response

Error response - ERROR_VALIDATION.

HTTP/1.1 400 BAD REQUEST

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceId": "{{traceld}}",



“errorStatus": "ERROR VALIDATION",
"message": "Some fields are invalid",
"data": [
{
"field": "{{field name from request}}",

"message": "{{message}}"

Error response - ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame- Options: DENY

"traceId": "{{traceId}}",
"errorStatus": "ERROR BAD TOKEN"

Error response - PRODUCT_NOT_FOUND.

HTTP/1.1 404 NOT FOUND

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame- Options: DENY

"traceId": "{{tracelId}}",
"errorStatus": "PRODUCT NOT FOUND",



"message": "Product by name {{product name}} not found."

Error response - INTERNAL_SERVER_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceId": "{{traceId}}",
"errorStatus": "INTERNAL SERVER ERROR"

Response fields

Errors

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status Error Status Description

400 - Bad Request ERROR_VALIDATION Some fields are invalid

400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token

400 - Bad Request CRYPTOGRAPHY_ERROR Error decoding public key has sent in
- header: X-Encryption-Public-Key

400 - Bad Request CRYPTOGRAPHY_ERROR Error on decrypting request

400 - Bad Request CRYPTOGRAPHY_ERROR Error on encrypting response

400 - Bad Request CRYPTOGRAPHY_ERROR JWE encryption Key is invalid

400 - Bad Request CRYPTOGRAPHY_ERROR JWE payload is expired

400 - Bad Request INVALID_PHONE_NUMBERS Phone numbers has incorrect format

404 - Not Found PRODUCT NOT_FOUND Product not found based on sent

header: Product-Name



500 - Internal Server Error INTERNAL_SERVER_ERROR Internal application error

Examples

Determine currency

Request body with header: X-Encryption-Public-Key.

Method is used to determine currencies applied for given sender and receiver cards.

Request

Receiver.receiverType = WALLET_CARD _ID.

POST /mobile-api/determine-currency HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product- Name:

Content- Type: application/json
Content-Length: 56

{
"sender": {
"cardId": "219754"
H
"receiver": {
“card": ["2","1","4", "4", "9", "2"],
"userId": "1223",
"receiverType": "WALLET CARD ID"
}
}

Receiver.receiverType = FRIEND ID.

POST /mobile-api/determine-currency HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9nzWA6YWNrbWU=



Product-Name: TestProduct

Content-Length: 56

{
"sender": {
"cardId": "219754"
b
"receiver": {
"userId": "21",
"receiverType": "FRIEND ID"
}
}

Receiver.receiverType = EMPTY.

POST /mobile-api/determine-currency HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9nzWA46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

{
"sender": {
"cardId": "219754"
H
"receiver": {
"receiverType": "EMPTY"
}
}

Receiver.receiverType = BARE_CARD_NUMBER.

POST /mobile-api/determine-currency HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9nzWA46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

"sender": {



"cardId": "219754"
b

"receiver": {
Ilcardll: [II2II’II2II’II2II,II1II,IIOII’II OII’II4II’IIOII’II7II’II2II’II1II,II9II’II 0ll,ll1ll,ll8ll’ll 5II],
"receiverType": "BARE CARD NUMBER"

Request headers

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description
. Mobile . Device token with "Mobile "
Authorization Required .
bG9naW46YWNrbWU= prefix
Product-Name TestProduct Required Application product name

Header must be present if

application/x-jwe- ) the request body is
Content-Type . . Optional .
encryption-body+json encrypted using the JWE
standard.

Header must be present if
the response body is to be

X-Encryption-Public-Key Optional encrypted using the JWE
standard. Public key must
be encoded Base64.

Request fields

Response

Error response - ERROR_VALIDATION.

HTTP/1.1 400 BAD REQUEST

Content- Type: application/json; charset=UTF-8

X-Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame- Options: DENY



"traceId": "{{traceId}}",
“errorStatus": "ERROR VALIDATION",
"message": "Some fields are invalid",
"data": [
{
"field": "{{field name from request}}",

"message": "{{message}}"

Error response - ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content- Type: application/json; charset=UTF-8

X-Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "ERROR BAD TOKEN"

Error response - PRODUCT_NOT_FOUND.

HTTP/1.1 404 NOT FOUND

Content- Type: application/json; charset=UTF-8

X-Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY



"traceId": "{{traceld}}",

"errorStatus":

“PRODUCT _NOT_FOUND",

"message": "Product by name {{product name}} not found."

Error response - INTERNAL_SERVER_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection:

Cache-Control: no-

Pragma: no-cache

Expires: 0

1; mode=block

cache, no-store, max-age=0, must-revalidate

X-Frame-Options: DENY

"traceId": "{{traceld}}",

"errorStatus":

“INTERNAL SERVER ERROR"

Response fields

Errors

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status
400 - Bad Request

400 - Bad Request

400 - Bad Request

400 - Bad Request
400 - Bad Request
400 - Bad Request

400 - Bad Request

Error Status
ERROR_VALIDATION

ERROR_BAD_TOKEN

CRYPTOGRAPHY_ERROR

CRYPTOGRAPHY_ERROR
CRYPTOGRAPHY_ERROR
CRYPTOGRAPHY_ERROR

CRYPTOGRAPHY_ERROR

Description
Some fields are invalid
Invalid authorization token

Error decoding public key has sent in
header: X-Encryption-Public-Key

Error on decrypting request
Error on encrypting response
JWE encryption Key is invalid

JWE payload is expired



400 - Bad Request
400 - Bad Request

400 - Bad Request
404 - Not Found

404 - Not Found
404 - Not Found
500 - Internal Server Error
500 - Internal Server Error

500 - Internal Server Error

Examples

ERROR_SENDER_CARD_NOT ACTIVE
ERROR_RECEIVER_CARD_NOT ACTIVE

UNKNOWN_ERROR

PRODUCT_NOT_FOUND

CANT_FIND_CARD
FRIEND_NOT EXISTS
INTERNAL_SERVER_ERROR
ERROR_ON_GETTING_DEFAULT CARD

FENIGE_ERROR

Currency Rate

Request body with header: X-Encryption-Public-Key.

Sender card is not active
Receiver card is not active
Unknown error

Product not found based on sent
header: Product-Name

Not found card

Not found friend

Internal application error
Error on getting card for friend

Fenige error

Method is used for determine currency rate for revaluation from funding to payment (lowerRate)
and payment to funding (higherRate).
Notice that lowerRate is used to transaction processing.

Api Send-money allows users to select the direction of revaluation by providing specify type value

in send-money request.

1 - User by selecting type = SENDER defines amount of funding in given currency. This amount is
collected from sender card in selected currency.
2 - User by selecting type = RECEIVER defines amount of payment in given currency.

This amount is transferred to receiver card in selected currency.In case there’s need revaluation
from one currency to another, system uses lowerRate for situation 1 and higherRate for situation 2

Request

Request headers

Type

Constraints

Request body with header: X-Encryption-Public-Key

Description



Mobile

Authorization bGONaWA6YWNrbWU = Required
Product-Name TestProduct Required
X-Encryption-Public-Key Optional

Response

Error response - ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content- Type: application/json; charset=UTF-8
X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache
Expires: 0

X-Frame-Options: DENY

"traceId": "{{tracelId}}",
"errorStatus": "ERROR BAD TOKEN"

Error response - PRODUCT_NOT_FOUND.

HTTP/1.1 404 NOT FOUND

Content- Type: application/json; charset=UTF-8
X-Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache
Expires: 0

X-Frame-Options: DENY

"traceId": "{{traceld}}",

Device token with "Mobile "
prefix

Application product name

Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.



"errorStatus": "PRODUCT NOT FOUND",

"message": "Product by name {{product name}} not found."

Error response - INTERNAL_SERVER_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame- Options: DENY

"traceId": "{{traceId}}",
"errorStatus": "INTERNAL SERVER ERROR"

Response fields

Errors

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status Error Status Description
400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token
Error decoding public key has sent in
400 - Bad Request CRYPTOGRAPHY_ERROR
g - header: X-Encryption-Public-Key
400 - Bad Request CRYPTOGRAPHY_ERROR Error on encrypting response
400 - Bad Request CRYPTOGRAPHY_ERROR JWE encryption Key is invalid
400 - Bad Request CRYPTOGRAPHY_ERROR JWE payload is expired
Product not found based t
404 - Not Found PRODUCT_NOT_FOUND roduct notfound based on sen
- - header: Product-Name
500 - Internal Server Error INTERNAL_SERVER_ERROR Internal application error

500 - Internal Server Error FENIGE_ERROR Fenige error



Examples

Calculate commission

Request body with header: X-Encryption-Public-Key.

This method is used to receive information about the commission that will be charged for the
transaction. Additional description:

e If value the field: "reconciliationType" is "PLUS", the commission during the transaction
will be added to the amount sent (the amount charged from the sender will be increased
by a commission).

e If value the field: "reconciliationType" is "MINUS", then the commission during the
transaction will be deducted from the amount received (the amount that will be received
by the receiver will be reduced by the commission).

e If value the field: "reconciliationType" is "DEPOSITED", the commission during the
transaction will neither be subtracted nor added (the amount to be received by the
receiver is the same as the amount sent).

In addition, the user may specify in the field: type two values SENDER or RECEIVER.

After selecting the value: SENDER, the transaction will be sent in the amount indicated in the field:
amount. Whereas after choosing the value: RECEIVER, the transaction will be received in the
amount indicated in the field: amount. The method allows user to calculate commissions for the
currencies that have been entered.

Request

Receiver.receiverType = WALLET_CARD_ID.

POST /mobile-api/calculate-commission HTTP/1.1
Content- Type: application/json

Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 101

"amount": 200078,
"type": "RECEIVER",
"sender": {

"cardId":"219834",



“currency": "PLN"
}
"receiver": {
"userId": 2345,
"card": ["2","2","1","2","4","5"],
“currency": "PLN",

"receiverType": "WALLET CARD ID"

Receiver.receiverType = FRIEND_ID.

POST /mobile-api/calculate-commission HTTP/1.1
Content- Type: application/json

Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 101

"amount": 200078,
"type": "RECEIVER",
"sender": {
"cardId":"219834",
“currency": "PLN"
H
"receiver": {
"userId": 2345,
“currency": "PLN",

"receiverType": "FRIEND ID"

Receiver.receiverType = BARE_CARD_NUMBER.

POST /mobile-api/calculate-commission HTTP/1.1
Content- Type: application/json

Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 101



“amount": 200078,
"type": "RECEIVER",
"sender": {
"cardId":"219834",
“currency": "PLN"
b
"receiver": {
“card": ["5","4", "Q", "5", Q" g, 4, vy, o, e, 8", "2","6","4","5"],
“currency": "PLN",

"receiverType": "BARE CARD NUMBER"

Request headers

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description
L Mobile . Device token with "Mobile "
Authorization Required )
bG9naW46YWNrbWU= prefix
Product-Name TestProduct Required Application product name

Header must be present if
application/x-jwe- the request body is
Content-Type PP . ] . Optional q . y
encryption-body+json encrypted using the JWE

standard.

Header must be present if
the response body is to be

X-Encryption-Public-Key Optional encrypted using the JWE
standard. Public key must
be encoded Base64.

Request fields

Response

Error response - ERROR_VALIDATION.

HTTP/1.1 400 BAD REQUEST
Content- Type: application/json; charset=UTF-8



X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceId": "{{tracelId}}",
“errorStatus": "ERROR VALIDATION",
"message": "Some fields are invalid",
"data": [
{
"field": "{{field name from request}}",

"message": "{{message}}"

Error response - ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content- Type: application/json; charset=UTF-8

X-Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "ERROR BAD TOKEN"

Error response - PRODUCT_NOT_FOUND.

HTTP/1.1 404 NOT FOUND
Content- Type: application/json; charset=UTF-8
X-Content- Type-Options: nosniff



X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame- Options: DENY

{

"traceld": "{{traceld}}",

"errorStatus": "PRODUCT NOT FOUND",

"message": "Product by name {{product name}} not found."
}

Error response - INTERNAL_SERVER_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceId": "{{traceId}}",
"errorStatus": "INTERNAL SERVER ERROR"

Response fields

Errors

Encrypted response fields when sent header: X-Encryption-Public-Key
Http Status Error Status Description
400 - Bad Request ERROR_VALIDATION Some fields are invalid

400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token



400 - Bad Request

400 - Bad Request
400 - Bad Request
400 - Bad Request

400 - Bad Request

400 - Bad Request
400 - Bad Request

400 - Bad Request

400 - Bad Request
400 - Bad Request

400 - Bad Request
404 - Not Found

404 - Not Found
404 - Not Found
500 - Internal Server Error
500 - Internal Server Error

500 - Internal Server Error

Examples

Send Money

CRYPTOGRAPHY_ERROR

CRYPTOGRAPHY_ERROR
CRYPTOGRAPHY_ERROR
CRYPTOGRAPHY_ERROR
CRYPTOGRAPHY_ERROR

ERROR_WHILE_GETTING_COUNTRY_C
ODE

ERROR_WHILE_GETTING_SENDER_CO
UNTRY_CODE

ERROR_WHILE_GETTING_RECEIVER_C
OUNTRY_CODE

ERROR_SENDER_CARD_NOT ACTIVE
ERROR_RECEIVER_CARD_NOT ACTIVE

UNKNOWN_ERROR

PRODUCT_NOT_FOUND

CANT_FIND_CARD
FRIEND_NOT _EXISTS
INTERNAL_SERVER_ERROR
ERROR_ON_GETTING_DEFAULT CARD

FENIGE_ERROR

Request body with header: X-Encryption-Public-Key.

Error decoding public key has sent in
header: X-Encryption-Public-Key

Error on decrypting request
Error on encrypting response
JWE encryption Key is invalid

JWE payload is expired

Could not get card country code

Could not get card country code for
sender

Could not get card country code for
receiver

Sender card is not active
Receiver card is not active
Unknown error

Product not found based on sent
header: Product-Name

Not found card

Not found friend

Internal application error
Error on getting card for friend

Fenige error

This method is used to full MoneySend transaction (funding and payment).
Transfers can be make in any currency.
1 - User by selecting type = SENDER defines amount of funding in given currency.

This amount is collected from sender card in selected currency. 2 - User by selecting type =
RECEIVER defines amount of payment in given currency.

This amount is transferred to receiver card in selected currency.



In case there’s need revaluation from one currency to another, system uses lowerRate for situation
1 and higherRate for situation 2. For more details about specific rates please refer to Currency Rate
method.

This method adds friend to sender after successful transaction.

Additionally, you can perform full MoneySend transaction with externalAuthentication (see: 7?7 and

Authentication)

Request

Receiver.receiverType = WALLET_CARD_ID.

POST /mobile-api/send-money HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9nzWA46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

"amount": 1000,

"cvec2": ["1","2","3"],
“type": "RECEIVER",
"addressIp": "192.168.0.1",

"sender": {
"firstName": "Mark",
"lastName": "Wards",
"street": "Olszewskiego",

"houseNumber": "17A",
"city": "Lublin",
"postalCode": "20-400",
"flatNumber": "2",
"email": "senderEmail@fenige.pl",
“currency": "PLN",
"expirationDate": "03/20",
"personalIld": "AGC688910",
"cardId": "219708"

b

"receiver": {
"firstName": "Rob",

"lastName": "Wring",



“currency": "PLN",

“card": ["2","1","9","7","0","8"],
"displayName": "Rob W. ",
"phoneNumber": "48718222333",
"receiverType": "WALLET CARD ID",
"userId": "13001"

Receiver.receiverType = FRIEND_ID.

POST /mobile-api/send-money HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9nzWA46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

“amount": 1000,

“cvec2": ["1","2","3"],

“type": "RECEIVER",

"addressIp": "192.168.0.1",

“sender": {
"firstName": "Mark",
"lastName": "Wards",
"street": "Olszewskiego",
"houseNumber": "17A",
"city": "Lublin",
"postalCode": "20-400",
"flatNumber": "2",
"email": "senderEmail@fenige. pl",
“currency": "PLN",
"expirationDate": "03/20",
"personalld": "AGC688910",
"cardId": "219708"

}

"receiver": {
"firstName": "Rob",
"lastName": "Wring",

“currency": "PLN",



"displayName": "Rob W.",
"receiverType": "FRIEND ID",
"userId": "123"

Receiver.receiverType = BARE_CARD _NUMBER.

POST /mobile-api/send-money HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9nzWA46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

“amount": 1000,

"cvec2": ["1","2","3"],
“type": "RECEIVER",
"addressIp": "192.168.0.1",

"sender": {
"firstName": "Mark",
"lastName": "Wards",
"street": "Olszewskiego",

"houseNumber": "17A",
"city": "Lublin",
"postalCode": "20-400",
"flatNumber": "2",
"email": "senderEmail@fenige.pl",
“currency": "PLN",
"expirationDate": "03/20",
"personalIld": "AGC688910",
"cardId": "219708"

b

"receiver": {
"firstName": "Rob",
"lastName": "Wring",
“currency": "PLN",
"card": ["5","1",6"4", 2", 3", "3","3", 6", 2", 9", "5, "2, 3,y "3, "2,
"displayName": "displayName",
"phoneNumber": "48299000111",



"receiverType":

"BARE CARD NUMBER"

ExternalAuthentication.authenticationld.

POST /mobile-api/send-money HTTP/1.1

Content- Type:
Authorization:
Product- Name:

Content-Length: 56

application/json
Mobile bG9nzW46YWNrbWU=
TestProduct

{

“amount" : 1000,

"cve2" : [ "1, "2", "3" ],

"type" : "RECEIVER",

"addressIp" : "192.168.0.1",

"sender" : {
"firstName" : "Mark",
"lastName" : "Asdasd",
"street" : "Olszewskiego",
"houseNumber" : "17A",
"city" : "Lublin",
"postalCode" : "20-400",
"flatNumber" : "2",
"email" : "senderEmail@fenige. pl",
“currency" : "PLN",
"expirationDate" : "03/20",
"personalId" : "AGC688910",
"cardId" : "219708"

h

"receiver" : {
"firstName" : "Rob",
"lastName" : "Wring",
"currency" : "PLN",
“card" : [ "2", "1", "o, "7", "O", "8" 1,
"displayName" : "displayName",
"phoneNumber" : "phoneNumber",
"receiverType" : "WALLET CARD ID",

"userId" : "123"



o
"externalAuthentication" : {

"authenticationId" : "authenticationId"

ExternalAuthentication.cavv, eci, transactionXld, authenticationStatus.

POST /mobile-api/send-money HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9nzWA46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

{

"amount" : 1000,

"cve2" : [ "1, "2", "3" 1,

"type" : "RECEIVER",

"addressIp" : "192.168.0.1",

"sender" : {
"firstName" : "Mark",
"lastName" : "Asdasd",
"street" : "Olszewskiego",
"houseNumber" : "17A",
"city" : "Lublin",
"postalCode" : "20-400",
"flatNumber" : "2",
"email" : "senderEmail@fenige. pl",
"currency" : "PLN",
"expirationDate" : "03/20",
"personalIld" : "AGC688910",
"cardId" : "219708"

b

"receiver" : {
"firstName" : "Rob",
"lastName" : "Wring",
“currency" : "PLN",

n Card" : [ n 2II’ n 1II’ n 9II , n 7II , IIOII , II8II ]’
"displayName" : "displayName",

"phoneNumber" : "phoneNumber",



"receiverType" : "WALLET CARD ID",

"userId" : "123"
}
"externalAuthentication" : {
"cavv" : "jEu04WZns7pbARAApU4qgNdITag",
"eci" : "PLN",
"authenticationStatus" : "Y",
"transactionXId" : "9742432a-dfdc-41lca-9ae9-b6595de65f1d"
}
}

Request headers

Type Value Constraints
N Mobile )
Authorization Required
bG9naW46YWNrbWU=
Product-Name TestProduct Required

application/x-jwe- .
Content-Type PP . ) . Optional
encryption-body+json

X-Encryption-Public-Key Optional

Request fields

Response

Error response - ERROR_VALIDATION.

HTTP/1.1 400 BAD REQUEST

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache

Description

Device token with "Mobile "
prefix

Application product name

Header must be present if
the request body is
encrypted using the JWE
standard.

Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.



Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceId}}",
"errorStatus": "ERROR VALIDATION",
"message": "Some fields are invalid",
"data": [
{
"field": "{{field name from request}}",

"message": "{{message}}"

Error response - ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceId": "{{traceId}}",
"errorStatus": "ERROR BAD TOKEN"

Error response - PRODUCT_NOT_FOUND.

HTTP/1.1 404 NOT FOUND

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0



X-Frame-Options: DENY

{

"traceld": "{{traceId}}",

"“errorStatus": "PRODUCT NOT FOUND",

"message": "Product by name {{product name}} not found."
}

Error response - INTERNAL_SERVER_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content- Type: application/json; charset=UTF-8

X-Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceId}}",
"errorStatus": "INTERNAL SERVER ERROR"

Response fields

Errors

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status Error Status Description
400 - Bad Request ERROR_VALIDATION Some fields are invalid
400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token
Error decoding public key has sent in

400 - Bad Request CRYPTOGRAPHY_ERROR . )

- header: X-Encryption-Public-Key
400 - Bad Request CRYPTOGRAPHY_ERROR Error on decrypting request
400 - Bad Request CRYPTOGRAPHY_ERROR Error on encrypting response

400 - Bad Request CRYPTOGRAPHY_ERROR JWE encryption Key is invalid



400 - Bad Request CRYPTOGRAPHY_ERROR

ERROR_WHILE_GETTING_COUNTRY_C

400 - Bad Request
ODE

ERROR_MERCHANT_NOT_SUPPORT_C

400 - Bad R t
00 - Bad Reques ARD_PROVIDER

400 - Bad Request ERROR_SENDER_CARD_NOT_ACTIVE
400 - Bad Request ERROR_RECEIVER_CARD_NOT_ACTIVE
400 - Bad Request ERROR_SENDER_CARD_IS_BLOCKED
400 - Bad Request ERROR_RECEIVER_CARD_IS_BLOCKED
400 - Bad Request UNKNOWN_ERROR

404 - Not Found PRODUCT_NOT_FOUND

404 - Not Found CANT_FIND_CARD

404 - Not Found FRIEND_NOT_EXISTS

500 - Internal Server Error INTERNAL_SERVER_ERROR

500 - Internal Server Error FENIGE_ERROR

500 - Internal Server Error ERROR_ON_GETTING_DEFAULT_CARD

Examples

Add Friend

Request body with header: X-Encryption-Public-Key.

This method allow user to add Friend.

Request

friendType = WALLET.

POST /mobile-api/wallet-users/friends HTTP/1.1
Content- Type: application/json

Authorization: Mobile bG9nzWA46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

JWE payload is expired

Could not get card country code

Merchant not support card provider

Sender card is not active
Receiver card is not active
Sender card is blocked
Receiver card is blocked
Unknown error

Product not found based on sent
header: Product-Name

Not found card

Not found friend

Internal application error
Fenige error

Error on getting card for friend



"friendWalletDataCoreId": 1,

"displayName":
"phoneNumber":
"friendType":
"firstName":

"lastName":

"Display name",
"48999111222",
"WALLET",

"First",

friendType = EXTERNAL.

POST /mobile-api/wallet-users/friends HTTP/1.1

Content- Type:
Authorization:
Product- Name:

Content-Length: 56

"displayName":
"phoneNumber":
"friendType":
"firstName":
"lastName":

"cardNumber":

application/json
Mobile bGI9nzWA6YWNrbWU=
TestProduct

"Display name",
"48999111222",
"EXTERNAL",

"First",

Request headers

Type

Authorization

Product-Name

Content-Type

Request body with header: X-Encryption-Public-Key

Value Constraints
Mobile Required
bGINaW46YWNrbWU= q
TestProduct Required

application/x-response-

Optional
body+json P

[||5||’ ||5||’ ||2||’ ||7||, ||4||’ n 7||’ ll9||, II6II’ "6", n 8", ||3||, ||9||’ n 0", ||9||, ||5||’ n 7II]

Description

Device token with "Mobile "
prefix

Application product name

Header must be present if
the response body must
have body.



application/x-jwe-

Optional
encryption-body+json P

Content-Type

X-Encryption-Public-Key Optional

Request fields
Response
Response fields

Examples

Get User friends

Request body with header: X-Encryption-Public-Key.

This method allow user to get all his friends

Request

Request headers

Header must be present if
the request body is
encrypted using the JWE
standard.

Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Encrypted request body with header: Content-Type: application/x-jwe-encryption-body+json

Type Value Constraints
N Mobile )
Authorization Required
bG9naW46YWNrbWU=

Product-Name TestProduct Required

Description

Device token with "Mobile
prefix

Application product name



X-Encryption-Public-Key Optional

Response
Response fields

Examples

Update Friend

Request body with header: X-Encryption-Public-Key.

Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

This method allow user to update friend. For a friend of the type: WALLET, can update only the
field: displayName. For a friend of the type: EXTERNAL, can update the fields: phoneNumber,

displayName, firstName, lastName, cardNumber.

Request

friendType = WALLET.

PUT /mobile-api/wallet-users/friends/24 HTTP/1.1
Content- Type: application/json

Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 101

"displayName": "Display name"

friendType = EXTERNAL.



PUT /mobile-api/wallet-users/friends/24 HTTP/1.1
Content- Type: application/json

Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 101

{

"phoneNumber": "48999000111",

"displayName": "Display name",

"firstName": "First",

"lastName": "Last",

"cardNumber":["4",6"4", "4", "o","0"," 0", 0", "4","4","4","0","4","0"]
}

Request headers

Encrypted request body with header: Content-Type: application/x-jwe-encryption-body+json

Type Value Constraints Description
L Mobile ) Device token with "Mobile "
Authorization Required )
bG9naW46YWNrbWU= prefix
Product-Name TestProduct Required Application product name

Header must be present if

application/x-jwe- . the request body is
Content-Type ) ) Optional :
encryption-body+json encrypted using the JWE
standard.

Request fields
Response

Examples

Delete friend



Encrypted request body with header: Content-Type: application/x-jwe-encryption-

body+json.

This method allow user to delete friend

Request

Request headers

Type Value
L Mobile
Authorization
bG9naW46YWNrbWU=
Product-Name TestProduct

Response

Examples

Get publicKey

This method allow user to get publicKey

Request

Request headers

Type Value

Authorization Mobile
bG9InaW46YWNrbwuU=

Product-Name TestProduct

Constraints

Required

Required

Constraints

Required

Required

Description

Device token with "Mobile "
prefix

Application product name

Description

Device token with "Mobile "
prefix

Application product name



Response
Response fields

Examples

MC Send

Every single method should contains Authorization and Mobile-Product headers.

Master Card Send

Methods allow sending money in MasterCard Send 2.0

Request

Sender.paymentAccountType = WALLET _CARD _ID.

POST /mobile-api/mc-send HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 885

{
"transactionId" : "bbb8597d-582c-4al2-alc8-be9377aed69",
"amount" : 40,
"currency" : "INR",
"sender" : {
"account" : "walletCardId",
“cvc2": ["3","2","1"],
"addressId" : "123",

“"paymentAccountType" : "WALLET CARD ID"



b
"recipient" : {
"name" : "Juniper Jane",
"accountUri" : "402414000000006",
"nationality" : "USA",
"dateOfBirth" : "2011-05-13",
"address" : {
"city" : "Cape Girardeau",
"country" : "USA",
"state" : "MO",
"postalCode" : "23232",
"street" : "Mastercard Blvd"
b
"phone" : "1234567890",
"email" : "jane. doe@mastercard. com",
"governmentIds" : [ "123456789", "123456789" 1],
"receiverType" : "BARE CARD NUMBER"
b
"grData" : "12",
"transactionPurpose" : "07",
"additionalMessage" : "message",

"merchantCategoryCode" : "6536"

Sender.paymentAccountType = IBAN_ID.

POST /mobile-api/mc-send HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 885

{
"transactionId" : "bbb8597d-582c-4al2-alc8-be9377aed6f9",
"amount" : 40,
"currency" : "INR",
"sender" : {
"account" : "ibanId",
"addressId" : "123",

"paymentAccountType" : "IBAN ID"



b
"recipient" : {
"name" : "Juniper Jane",
"accountUri" : "402414000000006",
"nationality" : "USA",
"dateOfBirth" : "2011-05-13",
"address" : {
"city" : "Cape Girardeau",
"country" : "USA",
"state" : "MO",
"postalCode" : "23232",
"street" : "Mastercard Blvd"
b
"phone" : "1234567890",
"email" : "jane. doe@mastercard. com",
"governmentIds" : [ "123456789", "123456789" 1],
"receiverType" : "BARE CARD NUMBER"
b
"grData" : "12",
"transactionPurpose" : "07",
"additionalMessage" : "message",

"merchantCategoryCode" : "6536"

Recipient.receiverType = WALLET_CARD_ID.

POST /mobile-api/mc-send HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 885

{
"transactionId" : "bbb8597d-582c-4al2-alc8-be9377aed6f9",
"amount" : 40,
"currency" : "INR",
"sender" : {
"account" : "ibanId",
"addressId" : "123",

"paymentAccountType" : "IBAN ID"



I

"recipient" : {
"name" : "Juniper Jane",
"accountUri" : "4024",
"nationality" : "USA",
"dateOfBirth" : "2011-05-13",
"address" : {
"city" : "Cape Girardeau",
"country" : "USA",
"state" : "MO",
"postalCode" : "23232",
"street" : "Mastercard Blvd"
b
"phone" : "1234567890",
"email" : "jane. doe@mastercard. com",

"governmentIds" : [ "123456789", "123456789" 1],
"userId" : 13001,
“receiverType" : "WALLET CARD ID"

}

"grData" : "12",

"transactionPurpose" : "07",

"additionalMessage" : "message",

"merchantCategoryCode" : "6536"

Recipient.receiverType = FRIEND_ID.

POST /mobile-api/mc-send HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 885

"transactionId" : "bbb8597d-582c-4al2-alc8-be9377aed6f9",
“amount" : 40,
"currency" : "INR",
"sender" : {
"account" : "ibanId",

"addressId" : "123",



“"paymentAccountType" : "IBAN ID"
}
"recipient" : {
"name" : "Juniper Jane",
"nationality" : "USA",
"dateOfBirth" : "2011-05-13",
"address" : {
"city" : "Cape Girardeau",
"country" : "USA",
"state" : "MO",
"postalCode" : "23232",
"street" : "Mastercard Blvd"
b
"phone" : "1234567890",
"email" : "jane. doe@mastercard. com",
"governmentIds" : [ "123456789", "123456789" 1],
"userId" : 13001,
"receiverType" : "FRIEND ID"
}
"grData" : "12",
"transactionPurpose" : "07",
"additionalMessage" : "message",

"merchantCategoryCode" : "6536"

Recipient.receiverType = BARE_CARD_NUMBER.

POST /mobile-api/mc-send HTTP/1.1
Content- Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 885

"transactionId" : "bbb8597d-582c-4al2-alc8-be9377aed6f9",
“amount" : 40,
"currency" : "INR",
"sender" : {
"account" : "ibanId",

"addressId" : "123",



“"paymentAccountType" : "IBAN ID"

}
"recipient" : {

"name" : "Juniper

Jane",

"accountUri" : "402414000000006",

"nationality" : "USA",

"dateOfBirth" : "2011-05-13",

"address" : {

"city" : "Cape Girardeau",

“country" : "USA",

“state" : "MO",

"postalCode" : "

23232",

"street" : "Mastercard Blvd"

}I

"phone" : "1234567890",

"email" : "jane. doe@mastercard. com",

"governmentIds"
"receiverType" "
}

"grData" : "12",
"transactionPurpose"

"additionalMessage"

[ "123456789", "123456789"
BARE CARD NUMBER"

n 07" ,

"message",

"merchantCategoryCode" : "6536"

Request headers

Type

Authorization

Product-Name

Content-Type

Request body with header: X-Encryption-Public-Key

Value

Mobile
bG9naW46YWNrbWU=

TestProduct

application/x-jwe-
encryption-body+json

1,

Constraints

Required

Required

Optional

Description

Device token with "Mobile
prefix

Application product name

Header must be present if
the request body is
encrypted using the JWE
standard.



Header must be present if
the response body is to be

X-Encryption-Public-Key Optional encrypted using the JWE

standard. Public key must
be encoded Baseb64.

Request fields

Response

errorStatus = INVALID_INPUT_FORMAT.

HTTP/1.1 400 BAD REQUEST

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

{
"traceld": "b4ce7ad5-758d-444f-90b3- ffbadb757e3f",
“errorStatus": "INVALID INPUT FORMAT",
"message": "Invalid Format",
"data": {
"error": [
{
"source": "recipient. accountURI. Expiration date",
"reasonCode": "INVALID INPUT FORMAT",
"errorDetailCode": "062000",
"description": "Invalid Format"
}
1
}
}

A formal table with Reason Code

Error Detail Code Reason Code Description



062000 INVALID_INPUT_FORMAT

072000 INVALID_INPUT_LENGTH
082000 INVALID_INPUT_VALUE
092000 MISSING_REQUIRED_INPUT
110501 RESOURCE_ERROR
110503 RESOURCE_ERROR
110505 RESOURCE_ERROR
110507 RESOURCE_UNKNOWN
110510 RESOURCE_ERROR
110537 RESOURCE_ERROR
130004 DECLINE

130006 DECLINE

130010 DECLINE

errorStatus = ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame- Options: DENY

"traceId": "{{traceld}}",
"errorStatus": "ERROR BAD TOKEN"

errorStatus = CANT_FIND PAYMENT TOKEN.

HTTP/1.1 404 NOT FOUND
Content- Type: application/json; charset=UTF-8
X- Content- Type-Options: nosniff

Value contains invalid character
Invalid length

Invalid value

Value is required

Duplicate value

Account not eligible

Invalid currency

Record not found

Invalid Request

Value is not supported for the
merchant

Per transaction maximum amount
limit reached

Transaction Limit is less than the
minimum configured for the partner

Partner not onboarded for the
network to reach the account



X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame- Options: DENY

{
"traceld": "89cdfc2b-346e-42d0-b20d- f3afaOlcec68",
"errorStatus": "CANT FIND PAYMENT TOKEN",
"message": "Payment token with given id was not found"
}

errorStatus = SYSTEM_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceId": "1c8d4flf-16db-4c43-bdce-0fe43ae39195",
"errorStatus": "SYSTEM ERROR",

"message": "Internal exception occurred.",
"data": {
"error": [
{

"source": "SYSTEM",
"reasonCode": "SYSTEM ERROR",
"errorDetailCode": null,

"description": "Internal exception occurred."



Response fields

Examples

Authentication

Every single method should contains Authorization and Mobile-Product headers.

Init Authentication

The authentication stage flow is indicated by the following field: threeDsMode
Method allows us to do initialize authentication using ThreeDs 2.0 protocol.
After this method you have 3 options:

e FRICTIONLESS - In response: authenticationStatus, transactionXld, cavv, eci and
threeDsMode = FRICTIONLESS are present. This response denotes that authentication
was finished.

e ThreeDsMethod flow - In response: threeDsMethodData and threeDsMode =
THREE_DS_METHOD are present. This response denotes that you should perform
ThreeDs method flow. After executing ThreeDs method flow, make a request for the

method: Continue Authentication
e CHALLENGE - In response: acsUrl, creq, challengeHtmIFormBase64 and threeDsMode =
CHALLENGE are present. This response denotes that you should perform challenge. After

executing challenge, make a request for the method: Finalize Authentication

Request

Request headers

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description



Mobile Device token with "Mobile "

Authorization bG9naW46YWNrbWU= Required prefix

Product-Name TestProduct Required Application product name
Header must be present if

Content-Type rayptionbodyson | 0PUOn® enerypted using the WE

standard.

Header must be present if
the response body is to be

X-Encryption-Public-Key Optional encrypted using the JWE
standard. Public key must
be encoded Base64.

Request fields

Response

threeDsMode = FRICTIONLESS.

HTTP/1.1 200 OK

Content- Type: application/json; charset=UTF-8

X-Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"authenticationId": "authenticationId",
"authenticationStatus": "Y",

“"transactionXId": "9742432a-dfdc-41lca-9ae9-b6595de65f1d",
"cavv": "jEu04WZns7pbARAApU4qgNdITag",

"eci": "02",

"threeDsMode": "FRICTIONLESS"

threeDsMode = THREE_DS_METHOD.



HTTP/1.1 200 OK

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame- Options: DENY

"authenticationId": "authenticationId",

"threeDsMethodData":
"eyJ0aHJ1ZURWZpY2F@aW9uVVIMI joiaHROCHM6L Yy93ZWIob29r LnNpdGUvc3MiL CJ0aHI1ZURTU2VydmVyVHIhbnNJIRCI
6IjNmYWYwZjFZi11iYjQyLThkN2RhM2MONj Y50S39",

"threeDsMethodUr1": "https: //threeDsMethodUrl- test. verestro. com/acs-mock",

"threeDsMode": "THREE DS METHOD"

threeDsMode = CHALLENGE.

HTTP/1.1 200 OK

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

{
"authenticationId": "authenticationId",
"acsUrl": "https: //acs-url. verestro. com/mock-acs",
"creq":

"eyJjYXIkQXVOaGVudGlj YNmODThLTk2Mj QtNGQ10S04NzZmL TNKMWViYTcyNzM3NiIsIm5vdGlmawWNhdGlvblVybvd2Vi

aG9vay5zaXR1LzE50DI3MWMYL T1j YWYtNGEyMy05ZGIiLWR1ZTc30DEXMDA10SIsInRocmVIRFNTZXJ2ZXJUcmFucOlETj

01iM2ZhZjBmMWQtM2YXxNyOOMTImLWIiNDIt0GQ3ZGEzYzQ2Njk5IiwibWVzc2FnZVZ1lcnNpb24i0iIyL jEuMCI9",
"challengeHtmlFormBase64":

"PGhObWw+PFNDUk1QVCBMQU5mMF2YXNj cmlwdCI+ZnVuY3Rpb24gT25Mb2FKkRXZ1bW11lbnQuZG93bmxvYWRGb3JtLnN1Yml

pdCgpO0yB9PC9TQLJJUFQ+PGIvZHKgT25Mb2FkmVudCgpO0yI+PGZvcmOgbmFtZT01ZG93bmxvYWRGb3JtIiBhY3Rpb249Im

hOdHBz01i8vbXBpLXNOYWdpbmcuZmVuaWdlLnBsL21vY2stYWNzIiBtZXRob2Q9I1BPU1QiPjxJTLBVVCBOeXB1PSJoaWRk



ZWAiXEiIHZhbHVIPSJleUpgWVhKalFYVjBhR1Z1ZEdsallYUnBiMj VKWKNINk L tRmpZbU5tTORsaExUaz IJNalFOTkdRMU9
TMDROelptTFR0a01 XVmLZVGN5 TnpNMO5pSXNIbTV2ZEdsbWF XTmhkR2x2 YmxWeWJIDSTZJIbWgwZEhCek9pOHZKM1Zp YUc5d
mF5NXphWFJs THpFNU9ESTNNVO15TFRsal L XWXROROV5 TXk wNVpHSMIMVL Js WLRj MO9ERXhNRGRs TINJcOluUm9jbVZsUkZ
OVFpYSjJaWEpVY21GdWMwbEVIam9pTTIaaFpqQmlNV1IFOTTIZeE55MDBNVEp t TFdKaUSESXRPR1IEZWkdFell6UTJ0ams1S
WL3aWIXVnpjMkZuWlZabGNuTnBiMjRpT21JeUxqRXVNQO05Ij48SU5QVVQgdHlwZT0iaGlkZGVuIiBuYW11PSJ0aHI1ZUR
TU2Vzc21vbkRhdGELiIHZhbHVIPSJIZVO5pWTIZNE9XRXRPVF 15 TKMWMFpEVTVMVGCcz TmlZdEOYUXhaVOpoTnpJIMO16YzIiP
jwvZm9ybT48L2JvZHk+PC90dGlsPg==",

"threeDsSessionData": " YWNiY2Y40WEtONCOOZDU5SLTg3NmYtM2QxZWIhNzI3Mzc2",

"threeDsMode": " CHALLENGE"

Response fields

Base response fields

Path Type Description
authenticationld String Unique authentication identifier
threeDsMethodData String Encoded data used for request to ACS

ACS endpoint for hidden request. If
threeDsMethodUrl String endpoint is not present then request
is not required.



authenticationStatus

transactionXId

cavv

eci

String

String

String

String

Indicates whether a transaction
qualifies as an authenticated
transaction or account verification.
Possible values are:

Y - Authentication/account verification
successful

N - Not authenticated/account not
verified; transaction denied

U - Authentication/account
verification could not be performed;
technical or other problem as
indicated in ARes or RReq

A - Attempts processing performed;
not authenticated/verified, but a proof
of attempted
authentication/verification is provided
C - Challenge required; additional
authentication is required using the
CReq/CRes

R - Authentication/account verification
rejected; issuer is rejecting
authentication/verification and
request that authorization not be
attempted

D - Challenge required; decoupled
authentication confirmed

I - Informational only; ThreeDs
Requestor challenge preference
acknowledged

The CRes message can contain only a
value of Y or N. Values of D and | are
only applicable for ThreeDs version
2.2.0.

This field indicates the transactionXid
from recurring initial authentication.

This property is determined by the
Access Control Server. This property
will be valid if the TransactionStatus is
"Y" or "A". The value may be used to
provide proof of authentication.

This property is determined by the
Access Control Server. This property
contains the two digit Electronic
Commerce Indicator (ECI) value,
which is to be submitted in a credit
card authorization message. This
value indicates to the processor that
the customer data in the authorization
message has been authenticated. The
data contained within this property is
only valid if the TransactionStatus is
"Y" or "A".



acsuUrl
creq

challengeHtmIFormBase64

threeDsSessionData

threeDsMode

Examples

Errors

Http Status
400 - Bad Request

400 - Bad Request

String

String

String

String

String

Error Status

PROCESS NOT_ALLOWED

ERROR_SENDER_CARD_NOT ACTIVE

If challenge is required, data for
building a form such as
challengeHtmIFormBase64

If challenge is required, data for
building a form such as
challengeHtmIFormBase64

This field is a BASE64 encrypted html
source file containing the challenge 3-
D Secure frame

ThreeDsSessionData value

ThreeDs process mode which informs
about. One of: [FRICTIONLESS,
THREE_DS_METHOD, CHALLENGE]
FRICTIONLESS - this is where the
authentication process was finished.
THREE_DS_METHOD - next step is to
execute the ThreeDs method process.
After it is done, we need to make a

request to the method: Continue

Authentication

CHALLENGE - next step is to execute
the challenge process. After it is done,
we need to make a request to the

method: Finalize Authentication

Request body with header: X-Encryption-Public-Key

Description

Method not allowed - invoke calculate
commission method is necessary first.

Sender card is not active

Continue Authentication

The authentication stage flow is indicated by the following field: threeDsMode

Method allows us to do continue authentication using ThreeDs 2.0 protocol. Use this method after
perform process ThreeDsMethod. This step is optional in the authentication process. Required only



if ThreeDsMethod case is present.
After this method you have 2 options:

e FRICTIONLESS - In response: authenticationStatus, transactionXld, cavv, eci and
threeDsMode = FRICTIONLESS are present. This response denotes that authentication
was finished.

e CHALLENGE - In response: acsUrl, creq, challengeHtmIFormBase64 and threeDsMode =
CHALLENGE are present. This response denotes that you should perform challenge. After

executing challenge, make a request for the method: Finalize Authentication

Request

Request headers

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description
o Mobile . Device token with "Mobile "
Authorization Required )
bG9naW46YWNrbWU= prefix
Product-Name TestProduct Required Application product name

Header must be present if

application/x-jwe- ) the request body is
Content-Type ) . Optional )
encryption-body+json encrypted using the JWE
standard.

Header must be present if
the response body is to be

X-Encryption-Public-Key Optional encrypted using the JWE
standard. Public key must
be encoded Base64.

Request fields

Response

threeDsMode = FRICTIONLESS.

HTTP/1.1 200 OK
Content- Type: application/json; charset=UTF-8
X- Content- Type-Options: nosniff



X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame- Options: DENY

"authenticationId": "authenticationId",
"authenticationStatus": "Y",

"transactionXId": "9742432a-dfdc-41ca-9ae9-b6595de65f1d",
"cavv": "jEuQ4WZns7pbARAApU4qgNdITag",

"eci": "02",

"threeDsMode": "FRICTIONLESS"

threeDsMode = CHALLENGE.

HTTP/1.1 200 OK

Content- Type: application/json; charset=UTF-8

X- Content- Type-Options: nosniff

X- XSS-Protection: 1; mode=block

Cache- Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

{
"authenticationId": "authenticationId",
"acsUrl": "https: //acs-url. verestro. com/mock-acs",
"creq":

"eyJjYXIkQXVOaGVudGlj YNmODThLTk2Mj QtNGQ10S04NzZmL TNKMWViYTcyNzM3NiIsIm5vdGlmawWNhdGlvb1lVybvd2Vi
aG9vay5zaXR1LzE50DI3MWMYL T1j YWYtNGEyMy05ZGIiLWR1ZTc30DEXMDA10SIsInRocmVIRFNTZXJ32ZXJUcmFucOlET j
0iM2ZhZjBmMWQtM2YXxNyOOMTImLWIiNDIt0GQ3ZGEzYzQ2Njk5IiwibWVzc2FnZVZ1lcnNpb24i0iIyL jEUMCI9",
"challengeHtmlFormBase64":

"PGhObWw+PFNDUk1QVCBMQU5MF2YXNj cmlwdCI+ZnVuY3Rpb24gT25Mb2FKkRXZ1bW11bnQuZG93bmxvYWRGb3JtLnN1Yml
pdCgpO0yB9PC9TQLJJUFQ+PGIvZHKgT25Mb2FkmVudCgp0yI+PGZvcmOgbmFtZT01ZG93bmxvYWRGb3JtIiBhY3Rpb249Im
h0dHBz01i8vbXBpL XN@YWdpbmcuZmVuaWdlLnBsL21vY2stYWNzIiBtZXRob2Q9I1BPU1QiPjxJTLBVVCBOeXB1PSJoaWRk
ZWAiXEiIHZhbHV1PSJleUpqWVhKalFYVjBhR1Z1ZEdsallYUnBiMj VKWkNINk1tRmpZbU5tTORsaExUaz IJNalFOTkdRMU9
TMDROelptTFR0a01 XVmLZVGN5 TnpNMO5pSXNIbTV2ZEdsbWF XTmhkR2x2 YmxWeWJIDSTZJIbWgwZEhCek9pOHZKM1Zp YUc5d
mF5NXphWFJs THpFNU9ESTNNVO15TFRsal L XWXROROV5 TXk wNVpHSmIMV1 s WLRjMOOERXhNRGRs TINJcOluUm9jbVZsUkZ



OVFpYSjJaWEpVY21GdWMwbEVIam9p TTJaaFpqQmlNV1IFOTTIZeE55MDBNVEpt TFdKaUSESXRPR1EZzWkdFell6UTI0ams1S
WL13aWJIXVnpjMkZuwWlZabGNuTnBiMjRpT21JeUxqRXVNQO05Ij48SU5QVVQgdHlwZT0iaGlkZGVuIiBuYW11PSJ0aHI1ZUR
TU2Vzc21vbkRhdGEiIHZhbHVIPSJIZVO5pWTIZNE9XRXRPVF 15 TkMwWMFpEVTVMVGcz Tm1ZdEOYUXhaVOpoTnpIMO16YzIiP
jwvZm9ybT48L2JvZHk+PC90dGlsPg==",

"threeDsSessionData": " YWNiY2Y40WEtONCOOZDU5SLTg3NmYtM2QxZWIhNzI3Mzc2",

"threeDsMode": "CHALLENGE"

Response fields

Base response fields
Path Type Description
authenticationld String Unique authentication identifier

Indicates whether a transaction
qualifies as an authenticated
transaction or account verification.
Possible values are:
Y - Authentication/account verification
successful
N - Not authenticated/account not
verified; transaction denied
U - Authentication/account
verification could not be performed;
technical or other problem as
indicated in ARes or RReq
A - Attempts processing performed;
not authenticated/verified, but a proof
of attempted
authentication/verification is provided
authenticationStatus String C - Challenge required; additional
authentication is required using the
CReq/CRes
R - Authentication/account verification
rejected; issuer is rejecting
authentication/verification and
request that authorization not be
attempted
D - Challenge required; decoupled
authentication confirmed
I - Informational only; ThreeDs
Requestor challenge preference
acknowledged
The CRes message can contain only a
value of Y or N. Values of D and | are
only applicable for ThreeDs version
2.2.0.

This field indicates the transactionXid

transactionXld Strin
9 from recurring initial authentication.



cavv

eci

acsuUrl
creq

challengeHtmIFormBase64

threeDsSessionData

threeDsMode

Examples

Finalize Authentication

Request body with header: X-Encryption-Public-Key.

String

String

String

String

String

String

String

This property is determined by the
Access Control Server. This property
will be valid if the TransactionStatus is
"Y" or "A". The value may be used to
provide proof of authentication.

This property is determined by the
Access Control Server. This property
contains the two digit Electronic
Commerce Indicator (ECI) value,
which is to be submitted in a credit
card authorization message. This
value indicates to the processor that
the customer data in the authorization
message has been authenticated. The
data contained within this property is
only valid if the TransactionStatus is
"Y" or "A".

If challenge is required, data for
building a form such as
challengeHtmIFormBase64

If challenge is required, data for
building a form such as
challengeHtmIFormBase64

This field is a BASE64 encrypted html
source file containing the challenge 3-
D Secure frame

ThreeDsSessionData value

ThreeDs process mode which informs
about. One of: [FRICTIONLESS,
CHALLENGE]

FRICTIONLESS - this is where the
authentication process was finished.
CHALLENGE - next step is to execute
the challenge process. After it is done,
we need to make a request to the

method: Finalize Authentication

Method allows us to do finalize authentication using ThreeDs 2.0 protocol.



Request

Request headers

Request body with header: X-Encryption-Public-Key

Type Value Constraints

Authorization Mobile Required
bGINaW46YWNrbWU= .

Product-Name TestProduct Required

application/x-jwe- )
Content-Type ) ) Optional
encryption-body+json

X-Encryption-Public-Key Optional

Request fields
Response

Response fields

Base response fields

Description

Device token with "Mobile "
prefix

Application product name

Header must be present if
the request body is
encrypted using the JWE
standard.

Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Baseb4.

Path Type Description

authenticationld String Unique authentication identifier



authenticationStatus

transactionXId

cavv

eci

String

String

String

String

Indicates whether a transaction
qualifies as an authenticated
transaction or account verification.
Possible values are:

Y - Authentication/account verification
successful

N - Not authenticated/account not
verified; transaction denied

U - Authentication/account
verification could not be performed;
technical or other problem as
indicated in ARes or RReq

A - Attempts processing performed;
not authenticated/verified, but a proof
of attempted
authentication/verification is provided
C - Challenge required; additional
authentication is required using the
CReq/CRes

R - Authentication/account verification
rejected; issuer is rejecting
authentication/verification and
request that authorization not be
attempted

D - Challenge required; decoupled
authentication confirmed

I - Informational only; ThreeDs
Requestor challenge preference
acknowledged

The CRes message can contain only a
value of Y or N. Values of D and | are
only applicable for ThreeDs version
2.2.0.

This field indicates the transactionXid
from recurring initial authentication.

This property is determined by the
Access Control Server. This property
will be valid if the TransactionStatus is
"Y" or "A". The value may be used to
provide proof of authentication.

This property is determined by the
Access Control Server. This property
contains the two digit Electronic
Commerce Indicator (ECI) value,
which is to be submitted in a credit
card authorization message. This
value indicates to the processor that
the customer data in the authorization
message has been authenticated. The
data contained within this property is
only valid if the TransactionStatus is
"Y" or "A".



Examples



SDK documentation Android

The Money Transfer Android SDK specification is divided into 3 main components (SDK's) listed in
table below:

Receivers This SDK is responsible for managing recipients

Transfers This SDK is responsible for managing money transfer

This SDK is responsible for processing and generating QR

QR codes


https://developer-android.verestro.com/receiverssdk/1.0.0/documentation/
https://developer-android.verestro.com/transferssdk/1.0.0/documentation/
https://developer-android.verestro.com/qrsdk/1.0.0/documentation/

SDK documentation 10S

The Money Transfer iOS SDK specification is divided into 3 main components (SDK's) listed in table
below:

Receivers This SDK is responsible for managing recipients

Transfers This SDK is responsible for managing money transfer

This SDK is responsible for processing and generating QR

QR codes


https://eclectic-granita-71de66.netlify.app/documentation/
https://heartfelt-scone-7e11ac.netlify.app/documentation/
https://cheerful-cajeta-2034e2.netlify.app/documentation/

