
Technical Documentation API
SDK documentation Android
SDK documentation iOS

Technical
Documentation

Money Transfer Hub provides possibility to process Person-2-Person and Person-2-Merchant
transactions in various forms. Please check details in the below documentation.

Based on ReceiverType user can fill different field in Receiver object in requests.

ReceiverType Description

BARE_CARD_NUMBER Bare card number in Receiver.card field

FRIEND_ID Should pass FriendId in Receiver.Card field

WALLET_CARD_ID Should pass DataCoreCardId to Receiver.Card field and
UserDataCoreCardId to Receiver.userId field

EMPTY Means that the receiver have the same card data like
sender. This type may be useful on Determine Currency

Technical Documentation
API

This documentation contains the methods for mobile-server integration. The methods
included in the documentation are intended for Customers creating their own mobile SDK.

The Customer creating the SDK must also remember about the integration with the
MobileDC component

Documentation for the server-to-server integration is available here but is deprecated.

Receiver types which can be used
to set Receiver.Type

JWE

https://developer.verestro.com/books/user-lifecycle-card-management-api-sdk
https://p2ptransactions.upaidtest.pl/docs/index.html

Peer To Peer Transaction Service supports encryption of requests and responses as standard JSON
Web Encryption (JWE) per RFC 7516.

Recommended to read the JWE standard: RFC 7516.

Methods that support request encryption in the JWE standard are tagged in the documentation with
the header: Content-Type:application/x-jwe-encryption-body+json. If the response is to be
encrypted with the JWE standard then the header must be added: X-Encryption-Public-Key with the
public key.

Processing requests and responses can be divided into 4 options listed below:

1. Base request → Base response - the following headers should be provided to pass this
case:

Content-Type: application/json
2. Base request → Encrypted response - the following headers should be provided to pass

this case:
Content-Type: application/json

3. Encrypted request → Base response - the following headers should be provided to pass
this case:

Content-Type: application/x-jwe-encryption-body+json
4. Encrypted request → Encrypted response - the following headers should be provided to

pass this case:
Content-Type: application/x-jwe-encryption-body+json

JWE represents encrypted content using JSON data structures and Base64 encoding. The
representation consists of three parts: a JWE Header, a encrypted payload, and a signature. The
three parts are serialized to UTF-8 bytes, then encoded using base64url encoding. The JWE’s
header, payload, and signature are concatenated with periods (.).

JWE typically takes the following form:

JWE header contains:

Type Value Constraints Description

Overview

{Base64 encoded header}.{Base64 encoded payload}.{Base64 encoded signature}

https://datatracker.ietf.org/doc/html/rfc7516

alg RSA-OAEP-256 Required Identifies the cryptographic
algorithm used to secure
the JWE Encrypted Key.
Supported algorithms:
RSA-OAEP-256, RSA-
OAEP-384, RSA-OAEP-
512. Recommend value:
RSA-OAEP-256.

enc A256GCM Required Identifies the cryptographic
algorithm used to secure
the payload. Supported
algorithms: A128GCM,
A192GCM, A256GCM,
A128CBC-HS256,
A192CBC-HS384,
A256CBC-HS512.
Recommend value:
A256GCM.

typ JOSE Optional Identifies the type of
encrypted payload.
Recommend value: JOSE.

iat 1637929226 Optional Identifies the time of
generation of the JWT
token. Supported date
format: unix time in UTC. In
the case of iatsend, the
validity of JWE is validated.
Recommend send the
header due to the increase
in the security level.

kid 5638742a5094327fcd7a59
45d06a45a9d83e9006

Optional Identifies the public key of
use to encrypt payload.
Supported format: SHA-1
value of the public key. In
the case of kid send, the
validity of public key is
validated, so we can inform
the client that the public
key has changed.

Every encrypted request should include JWE token. The jwe token should be passed in the field:
value.

In case of problems with the implementation of JWE, please contact the administrator.

To prepare the encrypted payload:

The steps may differ depending on the libraries used.

Payload Encryption

1. Get the public key using the method: [???](#Get publicKey). The public key is encoded
with Base64.

2. Decode the public key.
3. Then create a correct object to be encrypted.
4. Encrypt the created object with the public key.
5. Create JWE header compatible with: JWE Header
6. Make a request on the method that supports JWE. Set the JWE token in the field: value.

Methods supporting JWE use the following header: Content-Type:application/x-jwe-
encryption-body+json.

To prepare the decrypted payload:

The steps may differ depending on the libraries used.

The cryptographic algorithm used to secure the payload is: A256GCM, while to secure the
encrypted JWE key: RSA-OAEP-256.

1. For the response to be encrypted you need to send public key in the header: X-Encryption-
Public-Key. The header value must be encoded Base64.

2. After receiving the response, you should get the JWE token from the field: value.
3. Decrypt the JWE token from the field: value with the private key.

Public key format to be encoded in Base64.

Every single method should contains Authorization and Mobile-Product headers.

Method used to find users with valid mc card type (not expired, strong verified). Response will
contain phone numbers with user and card identifiers. Users without accepted TOS or without valid
MC card will not be returned in response. If user has multiple cards that match criteria response

Payload Decryption

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0IDAQAB...
-----END PUBLIC KEY-----

P2P

Active Accounts

will contain only user’s default card id.

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-jwe-
encryption-body+json

Optional Header must be present if
the request body is
encrypted using the JWE
standard.

X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Error response - ERROR_VALIDATION.

Request

Request headers

Request fields

Response

HTTP/1.1 400 BAD REQUEST
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",

Error response - ERROR_BAD_TOKEN.

Error response - PRODUCT_NOT_FOUND.

 "errorStatus": "ERROR_VALIDATION",
 "message": "Some fields are invalid",
 "data": [
 {
 "field": "{{field_name_from_request}}",
 "message": "{{message}}"
 }
]
}

HTTP/1.1 400 BAD REQUEST
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "ERROR_BAD_TOKEN"
}

HTTP/1.1 404 NOT FOUND
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "PRODUCT_NOT_FOUND",

Error response - INTERNAL_SERVER_ERROR.

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status Error Status Description

400 - Bad Request ERROR_VALIDATION Some fields are invalid

400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token

400 - Bad Request CRYPTOGRAPHY_ERROR Error decoding public key has sent in
header: X-Encryption-Public-Key

400 - Bad Request CRYPTOGRAPHY_ERROR Error on decrypting request

400 - Bad Request CRYPTOGRAPHY_ERROR Error on encrypting response

400 - Bad Request CRYPTOGRAPHY_ERROR JWE encryption Key is invalid

400 - Bad Request CRYPTOGRAPHY_ERROR JWE payload is expired

400 - Bad Request INVALID_PHONE_NUMBERS Phone numbers has incorrect format

404 - Not Found PRODUCT_NOT_FOUND Product not found based on sent
header: Product-Name

 "message": "Product by name {{product_name}} not found."
}

HTTP/1.1 500 INTERNAL SERVER ERROR
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "INTERNAL_SERVER_ERROR"
}

Response fields

Errors

500 - Internal Server Error INTERNAL_SERVER_ERROR Internal application error

Request body with header: X-Encryption-Public-Key.

Method is used to determine currencies applied for given sender and receiver cards.

Receiver.receiverType = WALLET_CARD_ID.

Receiver.receiverType = FRIEND_ID.

Examples

Determine currency

Request

POST /mobile-api/determine-currency HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name:
Content-Type: application/json
Content-Length: 56

{
 "sender": {
 "cardId": "219754"
 },
 "receiver": {
 "card": ["2","1","4","4","9","2"],
 "userId": "1223",
 "receiverType": "WALLET_CARD_ID"
 }
}

POST /mobile-api/determine-currency HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=

Receiver.receiverType = EMPTY.

Receiver.receiverType = BARE_CARD_NUMBER.

Product-Name: TestProduct
Content-Length: 56

{
 "sender": {
 "cardId": "219754"
 },
 "receiver": {
 "userId": "21",
 "receiverType": "FRIEND_ID"
 }
}

POST /mobile-api/determine-currency HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 56

{
 "sender": {
 "cardId": "219754"
 },
 "receiver": {
 "receiverType": "EMPTY"
 }
}

POST /mobile-api/determine-currency HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 56

{
 "sender": {

Request body with header: X-Encryption-Public-Key
Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-jwe-
encryption-body+json

Optional Header must be present if
the request body is
encrypted using the JWE
standard.

X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Error response - ERROR_VALIDATION.

 "cardId": "219754"
 },
 "receiver": {
 "card": ["2","2","2","1","0","0","4","0","7","2","1","9","0","1","8","5"],
 "receiverType": "BARE_CARD_NUMBER"
 }
}

Request headers

Request fields

Response

HTTP/1.1 400 BAD REQUEST
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

Error response - ERROR_BAD_TOKEN.

Error response - PRODUCT_NOT_FOUND.

{
 "traceId": "{{traceId}}",
 "errorStatus": "ERROR_VALIDATION",
 "message": "Some fields are invalid",
 "data": [
 {
 "field": "{{field_name_from_request}}",
 "message": "{{message}}"
 }
]
}

HTTP/1.1 400 BAD REQUEST
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "ERROR_BAD_TOKEN"
}

HTTP/1.1 404 NOT FOUND
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

Error response - INTERNAL_SERVER_ERROR.

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status Error Status Description

400 - Bad Request ERROR_VALIDATION Some fields are invalid

400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token

400 - Bad Request CRYPTOGRAPHY_ERROR Error decoding public key has sent in
header: X-Encryption-Public-Key

400 - Bad Request CRYPTOGRAPHY_ERROR Error on decrypting request

400 - Bad Request CRYPTOGRAPHY_ERROR Error on encrypting response

400 - Bad Request CRYPTOGRAPHY_ERROR JWE encryption Key is invalid

400 - Bad Request CRYPTOGRAPHY_ERROR JWE payload is expired

{
 "traceId": "{{traceId}}",
 "errorStatus": "PRODUCT_NOT_FOUND",
 "message": "Product by name {{product_name}} not found."
}

HTTP/1.1 500 INTERNAL SERVER ERROR
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "INTERNAL_SERVER_ERROR"
}

Response fields

Errors

400 - Bad Request ERROR_SENDER_CARD_NOT_ACTIVE Sender card is not active

400 - Bad Request ERROR_RECEIVER_CARD_NOT_ACTIVE Receiver card is not active

400 - Bad Request UNKNOWN_ERROR Unknown error

404 - Not Found PRODUCT_NOT_FOUND Product not found based on sent
header: Product-Name

404 - Not Found CANT_FIND_CARD Not found card

404 - Not Found FRIEND_NOT_EXISTS Not found friend

500 - Internal Server Error INTERNAL_SERVER_ERROR Internal application error

500 - Internal Server Error ERROR_ON_GETTING_DEFAULT_CARD Error on getting card for friend

500 - Internal Server Error FENIGE_ERROR Fenige error

Request body with header: X-Encryption-Public-Key.

Method is used for determine currency rate for revaluation from funding to payment (lowerRate)
and payment to funding (higherRate).
Notice that lowerRate is used to transaction processing.

Api Send-money allows users to select the direction of revaluation by providing specify type value
in send-money request.
1 - User by selecting type = SENDER defines amount of funding in given currency. This amount is
collected from sender card in selected currency.
2 - User by selecting type = RECEIVER defines amount of payment in given currency.
This amount is transferred to receiver card in selected currency.In case there’s need revaluation
from one currency to another, system uses lowerRate for situation 1 and higherRate for situation 2

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description

Examples

Currency Rate

Request

Request headers

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Error response - ERROR_BAD_TOKEN.

Error response - PRODUCT_NOT_FOUND.

Response

HTTP/1.1 400 BAD REQUEST
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "ERROR_BAD_TOKEN"
}

HTTP/1.1 404 NOT FOUND
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",

Error response - INTERNAL_SERVER_ERROR.

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status Error Status Description

400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token

400 - Bad Request CRYPTOGRAPHY_ERROR Error decoding public key has sent in
header: X-Encryption-Public-Key

400 - Bad Request CRYPTOGRAPHY_ERROR Error on encrypting response

400 - Bad Request CRYPTOGRAPHY_ERROR JWE encryption Key is invalid

400 - Bad Request CRYPTOGRAPHY_ERROR JWE payload is expired

404 - Not Found PRODUCT_NOT_FOUND Product not found based on sent
header: Product-Name

500 - Internal Server Error INTERNAL_SERVER_ERROR Internal application error

500 - Internal Server Error FENIGE_ERROR Fenige error

 "errorStatus": "PRODUCT_NOT_FOUND",
 "message": "Product by name {{product_name}} not found."
}

HTTP/1.1 500 INTERNAL SERVER ERROR
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "INTERNAL_SERVER_ERROR"
}

Response fields

Errors

Request body with header: X-Encryption-Public-Key.

This method is used to receive information about the commission that will be charged for the
transaction. Additional description:

If value the field: "reconciliationType" is "PLUS", the commission during the transaction
will be added to the amount sent (the amount charged from the sender will be increased
by a commission).
If value the field: "reconciliationType" is "MINUS", then the commission during the
transaction will be deducted from the amount received (the amount that will be received
by the receiver will be reduced by the commission).
If value the field: "reconciliationType" is "DEPOSITED", the commission during the
transaction will neither be subtracted nor added (the amount to be received by the
receiver is the same as the amount sent).

In addition, the user may specify in the field: type two values SENDER or RECEIVER.
After selecting the value: SENDER, the transaction will be sent in the amount indicated in the field:
amount. Whereas after choosing the value: RECEIVER, the transaction will be received in the
amount indicated in the field: amount. The method allows user to calculate commissions for the
currencies that have been entered.

Receiver.receiverType = WALLET_CARD_ID.

Examples

Calculate commission

Request

POST /mobile-api/calculate-commission HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 101

{
 "amount": 200078,
 "type": "RECEIVER",
 "sender":{
 "cardId":"219834",

Receiver.receiverType = FRIEND_ID.

Receiver.receiverType = BARE_CARD_NUMBER.

 "currency":"PLN"
 },
 "receiver":{
 "userId": 2345,
 "card": ["2","2","1","2","4","5"],
 "currency": "PLN",
 "receiverType": "WALLET_CARD_ID"
 }
}

POST /mobile-api/calculate-commission HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 101

{
 "amount": 200078,
 "type": "RECEIVER",
 "sender":{
 "cardId":"219834",
 "currency":"PLN"
 },
 "receiver":{
 "userId": 2345,
 "currency": "PLN",
 "receiverType": "FRIEND_ID"
 }
}

POST /mobile-api/calculate-commission HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 101

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-jwe-
encryption-body+json

Optional Header must be present if
the request body is
encrypted using the JWE
standard.

X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Error response - ERROR_VALIDATION.

{
 "amount": 200078,
 "type": "RECEIVER",
 "sender":{
 "cardId":"219834",
 "currency":"PLN"
 },
 "receiver":{
 "card": ["5","4","9","5","9","8","4","1","7","9","0","8","2","6","4","5"],
 "currency": "PLN",
 "receiverType": "BARE_CARD_NUMBER"
 }
}

Request headers

Request fields

Response

HTTP/1.1 400 BAD REQUEST
Content-Type: application/json;charset=UTF-8

Error response - ERROR_BAD_TOKEN.

Error response - PRODUCT_NOT_FOUND.

X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "ERROR_VALIDATION",
 "message": "Some fields are invalid",
 "data": [
 {
 "field": "{{field_name_from_request}}",
 "message": "{{message}}"
 }
]
}

HTTP/1.1 400 BAD REQUEST
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "ERROR_BAD_TOKEN"
}

HTTP/1.1 404 NOT FOUND
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

Error response - INTERNAL_SERVER_ERROR.

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status Error Status Description

400 - Bad Request ERROR_VALIDATION Some fields are invalid

400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token

X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "PRODUCT_NOT_FOUND",
 "message": "Product by name {{product_name}} not found."
}

HTTP/1.1 500 INTERNAL SERVER ERROR
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "INTERNAL_SERVER_ERROR"
}

Response fields

Errors

400 - Bad Request CRYPTOGRAPHY_ERROR Error decoding public key has sent in
header: X-Encryption-Public-Key

400 - Bad Request CRYPTOGRAPHY_ERROR Error on decrypting request

400 - Bad Request CRYPTOGRAPHY_ERROR Error on encrypting response

400 - Bad Request CRYPTOGRAPHY_ERROR JWE encryption Key is invalid

400 - Bad Request CRYPTOGRAPHY_ERROR JWE payload is expired

400 - Bad Request ERROR_WHILE_GETTING_COUNTRY_C
ODE

Could not get card country code

400 - Bad Request ERROR_WHILE_GETTING_SENDER_CO
UNTRY_CODE

Could not get card country code for
sender

400 - Bad Request ERROR_WHILE_GETTING_RECEIVER_C
OUNTRY_CODE

Could not get card country code for
receiver

400 - Bad Request ERROR_SENDER_CARD_NOT_ACTIVE Sender card is not active

400 - Bad Request ERROR_RECEIVER_CARD_NOT_ACTIVE Receiver card is not active

400 - Bad Request UNKNOWN_ERROR Unknown error

404 - Not Found PRODUCT_NOT_FOUND Product not found based on sent
header: Product-Name

404 - Not Found CANT_FIND_CARD Not found card

404 - Not Found FRIEND_NOT_EXISTS Not found friend

500 - Internal Server Error INTERNAL_SERVER_ERROR Internal application error

500 - Internal Server Error ERROR_ON_GETTING_DEFAULT_CARD Error on getting card for friend

500 - Internal Server Error FENIGE_ERROR Fenige error

Request body with header: X-Encryption-Public-Key.

This method is used to full MoneySend transaction (funding and payment).
Transfers can be make in any currency.
1 - User by selecting type = SENDER defines amount of funding in given currency.
This amount is collected from sender card in selected currency. 2 - User by selecting type =
RECEIVER defines amount of payment in given currency.
This amount is transferred to receiver card in selected currency.

Examples

Send Money

In case there’s need revaluation from one currency to another, system uses lowerRate for situation
1 and higherRate for situation 2. For more details about specific rates please refer to Currency Rate
method.
This method adds friend to sender after successful transaction.

Additionally, you can perform full MoneySend transaction with externalAuthentication (see: ??? and
Authentication)

Receiver.receiverType = WALLET_CARD_ID.

Request

POST /mobile-api/send-money HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 56

{
 "amount": 1000,
 "cvc2": ["1","2","3"],
 "type": "RECEIVER",
 "addressIp": "192.168.0.1",
 "sender": {
 "firstName": "Mark",
 "lastName": "Wards",
 "street": "Olszewskiego",
 "houseNumber": "17A",
 "city": "Lublin",
 "postalCode": "20-400",
 "flatNumber": "2",
 "email": "senderEmail@fenige.pl",
 "currency": "PLN",
 "expirationDate": "03/20",
 "personalId": "AGC688910",
 "cardId": "219708"
 },
 "receiver": {
 "firstName": "Rob",
 "lastName": "Wring",

Receiver.receiverType = FRIEND_ID.

 "currency": "PLN",
 "card": ["2","1","9","7","0","8"],
 "displayName": "Rob W.",
 "phoneNumber": "48718222333",
 "receiverType": "WALLET_CARD_ID",
 "userId": "13001"
 }
}

POST /mobile-api/send-money HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 56

{
 "amount": 1000,
 "cvc2": ["1","2","3"],
 "type": "RECEIVER",
 "addressIp": "192.168.0.1",
 "sender": {
 "firstName": "Mark",
 "lastName": "Wards",
 "street": "Olszewskiego",
 "houseNumber": "17A",
 "city": "Lublin",
 "postalCode": "20-400",
 "flatNumber": "2",
 "email": "senderEmail@fenige.pl",
 "currency": "PLN",
 "expirationDate": "03/20",
 "personalId": "AGC688910",
 "cardId": "219708"
 },
 "receiver": {
 "firstName": "Rob",
 "lastName": "Wring",
 "currency": "PLN",

Receiver.receiverType = BARE_CARD_NUMBER.

 "displayName": "Rob W.",
 "receiverType": "FRIEND_ID",
 "userId": "123"
 }
}

POST /mobile-api/send-money HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 56

{
 "amount": 1000,
 "cvc2": ["1","2","3"],
 "type": "RECEIVER",
 "addressIp": "192.168.0.1",
 "sender": {
 "firstName": "Mark",
 "lastName": "Wards",
 "street": "Olszewskiego",
 "houseNumber": "17A",
 "city": "Lublin",
 "postalCode": "20-400",
 "flatNumber": "2",
 "email": "senderEmail@fenige.pl",
 "currency": "PLN",
 "expirationDate": "03/20",
 "personalId": "AGC688910",
 "cardId": "219708"
 },
 "receiver": {
 "firstName": "Rob",
 "lastName": "Wring",
 "currency": "PLN",
 "card": ["5","1","4","2","3","3","3","6","2","9","5","2","3","7","3","2"],
 "displayName": "displayName",
 "phoneNumber": "48299000111",

ExternalAuthentication.authenticationId.

 "receiverType": "BARE_CARD_NUMBER"
 }
}

POST /mobile-api/send-money HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 56

{
 "amount" : 1000,
 "cvc2" : ["1", "2", "3"],
 "type" : "RECEIVER",
 "addressIp" : "192.168.0.1",
 "sender" : {
 "firstName" : "Mark",
 "lastName" : "Asdasd",
 "street" : "Olszewskiego",
 "houseNumber" : "17A",
 "city" : "Lublin",
 "postalCode" : "20-400",
 "flatNumber" : "2",
 "email" : "senderEmail@fenige.pl",
 "currency" : "PLN",
 "expirationDate" : "03/20",
 "personalId" : "AGC688910",
 "cardId" : "219708"
 },
 "receiver" : {
 "firstName" : "Rob",
 "lastName" : "Wring",
 "currency" : "PLN",
 "card" : ["2", "1", "9", "7", "0", "8"],
 "displayName" : "displayName",
 "phoneNumber" : "phoneNumber",
 "receiverType" : "WALLET_CARD_ID",
 "userId" : "123"

ExternalAuthentication.cavv, eci, transactionXId, authenticationStatus.

 },
 "externalAuthentication" : {
 "authenticationId" : "authenticationId"
 }
}

POST /mobile-api/send-money HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 56

{
 "amount" : 1000,
 "cvc2" : ["1", "2", "3"],
 "type" : "RECEIVER",
 "addressIp" : "192.168.0.1",
 "sender" : {
 "firstName" : "Mark",
 "lastName" : "Asdasd",
 "street" : "Olszewskiego",
 "houseNumber" : "17A",
 "city" : "Lublin",
 "postalCode" : "20-400",
 "flatNumber" : "2",
 "email" : "senderEmail@fenige.pl",
 "currency" : "PLN",
 "expirationDate" : "03/20",
 "personalId" : "AGC688910",
 "cardId" : "219708"
 },
 "receiver" : {
 "firstName" : "Rob",
 "lastName" : "Wring",
 "currency" : "PLN",
 "card" : ["2", "1", "9", "7", "0", "8"],
 "displayName" : "displayName",
 "phoneNumber" : "phoneNumber",

Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-jwe-
encryption-body+json

Optional Header must be present if
the request body is
encrypted using the JWE
standard.

X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Error response - ERROR_VALIDATION.

 "receiverType" : "WALLET_CARD_ID",
 "userId" : "123"
 },
 "externalAuthentication" : {
 "cavv" : "jEu04WZns7pbARAApU4qgNdJTag",
 "eci" : "PLN",
 "authenticationStatus" : "Y",
 "transactionXId" : "9742432a-dfdc-41ca-9ae9-b6595de65f1d"
 }
}

Request headers

Request fields

Response

HTTP/1.1 400 BAD REQUEST
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Error response - ERROR_BAD_TOKEN.

Error response - PRODUCT_NOT_FOUND.

Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "ERROR_VALIDATION",
 "message": "Some fields are invalid",
 "data": [
 {
 "field": "{{field_name_from_request}}",
 "message": "{{message}}"
 }
]
}

HTTP/1.1 400 BAD REQUEST
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "ERROR_BAD_TOKEN"
}

HTTP/1.1 404 NOT FOUND
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0

Error response - INTERNAL_SERVER_ERROR.

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status Error Status Description

400 - Bad Request ERROR_VALIDATION Some fields are invalid

400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token

400 - Bad Request CRYPTOGRAPHY_ERROR Error decoding public key has sent in
header: X-Encryption-Public-Key

400 - Bad Request CRYPTOGRAPHY_ERROR Error on decrypting request

400 - Bad Request CRYPTOGRAPHY_ERROR Error on encrypting response

400 - Bad Request CRYPTOGRAPHY_ERROR JWE encryption Key is invalid

X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "PRODUCT_NOT_FOUND",
 "message": "Product by name {{product_name}} not found."
}

HTTP/1.1 500 INTERNAL SERVER ERROR
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "INTERNAL_SERVER_ERROR"
}

Response fields

Errors

400 - Bad Request CRYPTOGRAPHY_ERROR JWE payload is expired

400 - Bad Request ERROR_WHILE_GETTING_COUNTRY_C
ODE

Could not get card country code

400 - Bad Request ERROR_MERCHANT_NOT_SUPPORT_C
ARD_PROVIDER

Merchant not support card provider

400 - Bad Request ERROR_SENDER_CARD_NOT_ACTIVE Sender card is not active

400 - Bad Request ERROR_RECEIVER_CARD_NOT_ACTIVE Receiver card is not active

400 - Bad Request ERROR_SENDER_CARD_IS_BLOCKED Sender card is blocked

400 - Bad Request ERROR_RECEIVER_CARD_IS_BLOCKED Receiver card is blocked

400 - Bad Request UNKNOWN_ERROR Unknown error

404 - Not Found PRODUCT_NOT_FOUND Product not found based on sent
header: Product-Name

404 - Not Found CANT_FIND_CARD Not found card

404 - Not Found FRIEND_NOT_EXISTS Not found friend

500 - Internal Server Error INTERNAL_SERVER_ERROR Internal application error

500 - Internal Server Error FENIGE_ERROR Fenige error

500 - Internal Server Error ERROR_ON_GETTING_DEFAULT_CARD Error on getting card for friend

Request body with header: X-Encryption-Public-Key.

This method allow user to add Friend.

friendType = WALLET.

Examples

Add Friend

Request

POST /mobile-api/wallet-users/friends HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 56

friendType = EXTERNAL.

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-response-
body+json

Optional Header must be present if
the response body must
have body.

{
 "friendWalletDataCoreId": 1,
 "displayName": "Display name",
 "phoneNumber": "48999111222",
 "friendType": "WALLET",
 "firstName": "First",
 "lastName": "Last",
}

POST /mobile-api/wallet-users/friends HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 56

{
 "displayName": "Display name",
 "phoneNumber": "48999111222",
 "friendType": "EXTERNAL",
 "firstName": "First",
 "lastName": "Last",
 "cardNumber": ["5","5","2","7","4","7","9","6","6","8","3","9","0","9","5","7"]
}

Request headers

Content-Type application/x-jwe-
encryption-body+json

Optional Header must be present if
the request body is
encrypted using the JWE
standard.

X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Request body with header: X-Encryption-Public-Key.

This method allow user to get all his friends

Encrypted request body with header: Content-Type: application/x-jwe-encryption-body+json
Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Request fields

Response

Response fields

Examples

Get User friends

Request

Request headers

X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Request body with header: X-Encryption-Public-Key.

This method allow user to update friend. For a friend of the type: WALLET, can update only the
field: displayName. For a friend of the type: EXTERNAL, can update the fields: phoneNumber,
displayName, firstName, lastName, cardNumber.

friendType = WALLET.

friendType = EXTERNAL.

Response

Response fields

Examples

Update Friend

Request

PUT /mobile-api/wallet-users/friends/24 HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 101

{
 "displayName":"Display name"
}

Encrypted request body with header: Content-Type: application/x-jwe-encryption-body+json

Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-jwe-
encryption-body+json

Optional Header must be present if
the request body is
encrypted using the JWE
standard.

PUT /mobile-api/wallet-users/friends/24 HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 101

{
 "phoneNumber":"48999000111",
 "displayName":"Display name",
 "firstName":"First",
 "lastName":"Last",
 "cardNumber":["4","4","4","0","0","0","0","4","4","4","0","4","0"]
}

Request headers

Request fields

Response

Examples

Delete friend

Encrypted request body with header: Content-Type: application/x-jwe-encryption-
body+json.

This method allow user to delete friend

Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

This method allow user to get publicKey

Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Request

Request headers

Response

Examples

Get publicKey

Request

Request headers

Every single method should contains Authorization and Mobile-Product headers.

Methods allow sending money in MasterCard Send 2.0

Sender.paymentAccountType = WALLET_CARD_ID.

Response

Response fields

Examples

MC Send

Master Card Send

Request

POST /mobile-api/mc-send HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 885

{
 "transactionId" : "bbb8597d-582c-4a12-a1c8-be9377aed6f9",
 "amount" : 40,
 "currency" : "INR",
 "sender" : {
 "account" : "walletCardId",
 "cvc2": ["3","2","1"],
 "addressId" : "123",
 "paymentAccountType" : "WALLET_CARD_ID"

Sender.paymentAccountType = IBAN_ID.

 },
 "recipient" : {
 "name" : "Juniper Jane",
 "accountUri" : "402414000000006",
 "nationality" : "USA",
 "dateOfBirth" : "2011-05-13",
 "address" : {
 "city" : "Cape Girardeau",
 "country" : "USA",
 "state" : "MO",
 "postalCode" : "23232",
 "street" : "Mastercard Blvd"
 },
 "phone" : "1234567890",
 "email" : "jane.doe@mastercard.com",
 "governmentIds" : ["123456789", "123456789"],
 "receiverType" : "BARE_CARD_NUMBER"
 },
 "qrData" : "12",
 "transactionPurpose" : "07",
 "additionalMessage" : "message",
 "merchantCategoryCode" : "6536"
}

POST /mobile-api/mc-send HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 885

{
 "transactionId" : "bbb8597d-582c-4a12-a1c8-be9377aed6f9",
 "amount" : 40,
 "currency" : "INR",
 "sender" : {
 "account" : "ibanId",
 "addressId" : "123",
 "paymentAccountType" : "IBAN_ID"

Recipient.receiverType = WALLET_CARD_ID.

 },
 "recipient" : {
 "name" : "Juniper Jane",
 "accountUri" : "402414000000006",
 "nationality" : "USA",
 "dateOfBirth" : "2011-05-13",
 "address" : {
 "city" : "Cape Girardeau",
 "country" : "USA",
 "state" : "MO",
 "postalCode" : "23232",
 "street" : "Mastercard Blvd"
 },
 "phone" : "1234567890",
 "email" : "jane.doe@mastercard.com",
 "governmentIds" : ["123456789", "123456789"],
 "receiverType" : "BARE_CARD_NUMBER"
 },
 "qrData" : "12",
 "transactionPurpose" : "07",
 "additionalMessage" : "message",
 "merchantCategoryCode" : "6536"
}

POST /mobile-api/mc-send HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 885

{
 "transactionId" : "bbb8597d-582c-4a12-a1c8-be9377aed6f9",
 "amount" : 40,
 "currency" : "INR",
 "sender" : {
 "account" : "ibanId",
 "addressId" : "123",
 "paymentAccountType" : "IBAN_ID"

Recipient.receiverType = FRIEND_ID.

 },
 "recipient" : {
 "name" : "Juniper Jane",
 "accountUri" : "4024",
 "nationality" : "USA",
 "dateOfBirth" : "2011-05-13",
 "address" : {
 "city" : "Cape Girardeau",
 "country" : "USA",
 "state" : "MO",
 "postalCode" : "23232",
 "street" : "Mastercard Blvd"
 },
 "phone" : "1234567890",
 "email" : "jane.doe@mastercard.com",
 "governmentIds" : ["123456789", "123456789"],
 "userId" : 13001,
 "receiverType" : "WALLET_CARD_ID"
 },
 "qrData" : "12",
 "transactionPurpose" : "07",
 "additionalMessage" : "message",
 "merchantCategoryCode" : "6536"
}

POST /mobile-api/mc-send HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 885

{
 "transactionId" : "bbb8597d-582c-4a12-a1c8-be9377aed6f9",
 "amount" : 40,
 "currency" : "INR",
 "sender" : {
 "account" : "ibanId",
 "addressId" : "123",

Recipient.receiverType = BARE_CARD_NUMBER.

 "paymentAccountType" : "IBAN_ID"
 },
 "recipient" : {
 "name" : "Juniper Jane",
 "nationality" : "USA",
 "dateOfBirth" : "2011-05-13",
 "address" : {
 "city" : "Cape Girardeau",
 "country" : "USA",
 "state" : "MO",
 "postalCode" : "23232",
 "street" : "Mastercard Blvd"
 },
 "phone" : "1234567890",
 "email" : "jane.doe@mastercard.com",
 "governmentIds" : ["123456789", "123456789"],
 "userId" : 13001,
 "receiverType" : "FRIEND_ID"
 },
 "qrData" : "12",
 "transactionPurpose" : "07",
 "additionalMessage" : "message",
 "merchantCategoryCode" : "6536"
}

POST /mobile-api/mc-send HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct
Content-Length: 885

{
 "transactionId" : "bbb8597d-582c-4a12-a1c8-be9377aed6f9",
 "amount" : 40,
 "currency" : "INR",
 "sender" : {
 "account" : "ibanId",
 "addressId" : "123",

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-jwe-
encryption-body+json

Optional Header must be present if
the request body is
encrypted using the JWE
standard.

 "paymentAccountType" : "IBAN_ID"
 },
 "recipient" : {
 "name" : "Juniper Jane",
 "accountUri" : "402414000000006",
 "nationality" : "USA",
 "dateOfBirth" : "2011-05-13",
 "address" : {
 "city" : "Cape Girardeau",
 "country" : "USA",
 "state" : "MO",
 "postalCode" : "23232",
 "street" : "Mastercard Blvd"
 },
 "phone" : "1234567890",
 "email" : "jane.doe@mastercard.com",
 "governmentIds" : ["123456789", "123456789"],
 "receiverType" : "BARE_CARD_NUMBER"
 },
 "qrData" : "12",
 "transactionPurpose" : "07",
 "additionalMessage" : "message",
 "merchantCategoryCode" : "6536"
}

Request headers

X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

errorStatus = INVALID_INPUT_FORMAT.

A formal table with Reason Code
Error Detail Code Reason Code Description

Request fields

Response

HTTP/1.1 400 BAD REQUEST
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "b4ce7ad5-758d-444f-90b3-ffbadb757e3f",
 "errorStatus": "INVALID_INPUT_FORMAT",
 "message": "Invalid Format",
 "data": {
 "error": [
 {
 "source": "recipient.accountURI.Expiration date",
 "reasonCode": "INVALID_INPUT_FORMAT",
 "errorDetailCode": "062000",
 "description": "Invalid Format"
 }
]
 }
}

062000 INVALID_INPUT_FORMAT Value contains invalid character

072000 INVALID_INPUT_LENGTH Invalid length

082000 INVALID_INPUT_VALUE Invalid value

092000 MISSING_REQUIRED_INPUT Value is required

110501 RESOURCE_ERROR Duplicate value

110503 RESOURCE_ERROR Account not eligible

110505 RESOURCE_ERROR Invalid currency

110507 RESOURCE_UNKNOWN Record not found

110510 RESOURCE_ERROR Invalid Request

110537 RESOURCE_ERROR Value is not supported for the
merchant

130004 DECLINE Per transaction maximum amount
limit reached

130006 DECLINE Transaction Limit is less than the
minimum configured for the partner

130010 DECLINE Partner not onboarded for the
network to reach the account

errorStatus = ERROR_BAD_TOKEN.

errorStatus = CANT_FIND_PAYMENT_TOKEN.

HTTP/1.1 400 BAD REQUEST
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "{{traceId}}",
 "errorStatus": "ERROR_BAD_TOKEN"
}

HTTP/1.1 404 NOT FOUND
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

errorStatus = SYSTEM_ERROR.

X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "89cdfc2b-346e-42d0-b20d-f3afa01cec68",
 "errorStatus": "CANT_FIND_PAYMENT_TOKEN",
 "message": "Payment token with given id was not found"
}

HTTP/1.1 500 INTERNAL SERVER ERROR
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "traceId": "1c8d4f1f-16db-4c43-bdce-0fe43ae39195",
 "errorStatus": "SYSTEM_ERROR",
 "message": "Internal exception occurred.",
 "data": {
 "error": [
 {
 "source": "SYSTEM",
 "reasonCode": "SYSTEM_ERROR",
 "errorDetailCode": null,
 "description": "Internal exception occurred."
 }
]
 }
}

Every single method should contains Authorization and Mobile-Product headers.

The authentication stage flow is indicated by the following field: threeDsMode

Method allows us to do initialize authentication using ThreeDs 2.0 protocol.

After this method you have 3 options:

FRICTIONLESS - In response: authenticationStatus, transactionXId, cavv, eci and
threeDsMode = FRICTIONLESS are present. This response denotes that authentication
was finished.
ThreeDsMethod flow - In response: threeDsMethodData and threeDsMode =
THREE_DS_METHOD are present. This response denotes that you should perform
ThreeDs method flow. After executing ThreeDs method flow, make a request for the
method: Continue Authentication
CHALLENGE - In response: acsUrl, creq, challengeHtmlFormBase64 and threeDsMode =
CHALLENGE are present. This response denotes that you should perform challenge. After
executing challenge, make a request for the method: Finalize Authentication

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description

Response fields

Examples

Authentication

Init Authentication

Request

Request headers

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-jwe-
encryption-body+json

Optional Header must be present if
the request body is
encrypted using the JWE
standard.

X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

threeDsMode = FRICTIONLESS.

threeDsMode = THREE_DS_METHOD.

Request fields

Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "authenticationId": "authenticationId",
 "authenticationStatus": "Y",
 "transactionXId": "9742432a-dfdc-41ca-9ae9-b6595de65f1d",
 "cavv": "jEu04WZns7pbARAApU4qgNdJTag",
 "eci": "02",
 "threeDsMode": "FRICTIONLESS"
}

threeDsMode = CHALLENGE.

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "authenticationId": "authenticationId",
 "threeDsMethodData":
"eyJ0aHJlZURWZpY2F0aW9uVVJMIjoiaHR0cHM6Ly93ZWJob29rLnNpdGUvc3MiLCJ0aHJlZURTU2VydmVyVHJhbnNJR
CI6IjNmYWYwZjFZi1iYjQyLThkN2RhM2M0NjY5OSJ9",
 "threeDsMethodUrl": "https://threeDsMethodUrl-test.verestro.com/acs-mock",
 "threeDsMode": "THREE_DS_METHOD"
}

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "authenticationId": "authenticationId",
 "acsUrl": "https://acs-url.verestro.com/mock-acs",
 "creq":
"eyJjYXJkQXV0aGVudGljYNmODlhLTk2MjQtNGQ1OS04NzZmLTNkMWViYTcyNzM3NiIsIm5vdGlmaWNhdGlvblVybvd
2ViaG9vay5zaXRlLzE5ODI3MWMyLTljYWYtNGEyMy05ZGJiLWRlZTc3ODExMDdlOSIsInRocmVlRFNTZXJ2ZXJUcmFuc
0lEIjoiM2ZhZjBmMWQtM2YxNy00MTJmLWJiNDItOGQ3ZGEzYzQ2Njk5IiwibWVzc2FnZVZlcnNpb24iOiIyLjEuMCJ9",
 "challengeHtmlFormBase64":
"PGh0bWw+PFNDUklQVCBMQU5mF2YXNjcmlwdCI+ZnVuY3Rpb24gT25Mb2FkRXZlbW1lbnQuZG93bmxvYWRGb3J
tLnN1Ym1pdCgpOyB9PC9TQ1JJUFQ+PGJvZHkgT25Mb2FkmVudCgpOyI+PGZvcm0gbmFtZT0iZG93bmxvYWRGb3Jt
IiBhY3Rpb249Imh0dHBzOi8vbXBpLXN0YWdpbmcuZmVuaWdlLnBsL21vY2stYWNzIiBtZXRob2Q9IlBPU1QiPjxJTlBVV

Base response fields
Path Type Description

authenticationId String Unique authentication identifier

threeDsMethodData String Encoded data used for request to ACS

threeDsMethodUrl String ACS endpoint for hidden request. If
endpoint is not present then request
is not required.

CB0eXBlPSJoaWRkZW4iXEiIHZhbHVlPSJleUpqWVhKa1FYVjBhR1Z1ZEdsallYUnBiMjVKWkNJNkltRmpZbU5tT0RsaEx
UazJNalF0TkdRMU9TMDROelptTFROa01XVmlZVGN5TnpNM05pSXNJbTV2ZEdsbWFXTmhkR2x2YmxWeWJDSTZJbW
gwZEhCek9pOHZkMlZpYUc5dmF5NXphWFJsTHpFNU9ESTNNV015TFRsallXWXROR0V5TXkwNVpHSmlMV1JsWlRjM
09ERXhNRGRsT1NJc0luUm9jbVZsUkZOVFpYSjJaWEpVY21GdWMwbEVJam9pTTJaaFpqQm1NV1F0TTJZeE55MDBNV
EptTFdKaU5ESXRPR1EzWkdFell6UTJOams1SWl3aWJXVnpjMkZuWlZabGNuTnBiMjRpT2lJeUxqRXVNQ0o5Ij48SU5Q
VVQgdHlwZT0iaGlkZGVuIiBuYW1lPSJ0aHJlZURTU2Vzc2lvbkRhdGEiIHZhbHVlPSJZV05pWTJZNE9XRXRPVFl5TkMwM
FpEVTVMVGczTm1ZdE0yUXhaV0poTnpJM016YzIiPjwvZm9ybT48L2JvZHk+PC9odG1sPg==",
 "threeDsSessionData": "YWNiY2Y4OWEtONC00ZDU5LTg3NmYtM2QxZWJhNzI3Mzc2",
 "threeDsMode": "CHALLENGE"
}

Response fields

authenticationStatus String Indicates whether a transaction
qualifies as an authenticated
transaction or account verification.
Possible values are:
Y - Authentication/account verification
successful
N - Not authenticated/account not
verified; transaction denied
U - Authentication/account
verification could not be performed;
technical or other problem as
indicated in ARes or RReq
A - Attempts processing performed;
not authenticated/verified, but a proof
of attempted
authentication/verification is provided
C - Challenge required; additional
authentication is required using the
CReq/CRes
R - Authentication/account verification
rejected; issuer is rejecting
authentication/verification and
request that authorization not be
attempted
D - Challenge required; decoupled
authentication confirmed
I - Informational only; ThreeDs
Requestor challenge preference
acknowledged
The CRes message can contain only a
value of Y or N. Values of D and I are
only applicable for ThreeDs version
2.2.0.

transactionXId String This field indicates the transactionXid
from recurring initial authentication.

cavv String This property is determined by the
Access Control Server. This property
will be valid if the TransactionStatus is
"Y" or "A". The value may be used to
provide proof of authentication.

eci String This property is determined by the
Access Control Server. This property
contains the two digit Electronic
Commerce Indicator (ECI) value,
which is to be submitted in a credit
card authorization message. This
value indicates to the processor that
the customer data in the authorization
message has been authenticated. The
data contained within this property is
only valid if the TransactionStatus is
"Y" or "A".

acsUrl String If challenge is required, data for
building a form such as
challengeHtmlFormBase64

creq String If challenge is required, data for
building a form such as
challengeHtmlFormBase64

challengeHtmlFormBase64 String This field is a BASE64 encrypted html
source file containing the challenge 3-
D Secure frame

threeDsSessionData String ThreeDsSessionData value

threeDsMode String ThreeDs process mode which informs
about. One of: [FRICTIONLESS,
THREE_DS_METHOD, CHALLENGE]
FRICTIONLESS - this is where the
authentication process was finished.
THREE_DS_METHOD - next step is to
execute the ThreeDs method process.
After it is done, we need to make a
request to the method: Continue
Authentication
CHALLENGE - next step is to execute
the challenge process. After it is done,
we need to make a request to the
method: Finalize Authentication

Request body with header: X-Encryption-Public-Key

Http Status Error Status Description

400 - Bad Request PROCESS_NOT_ALLOWED Method not allowed - invoke calculate
commission method is necessary first.

400 - Bad Request ERROR_SENDER_CARD_NOT_ACTIVE Sender card is not active

The authentication stage flow is indicated by the following field: threeDsMode

Method allows us to do continue authentication using ThreeDs 2.0 protocol. Use this method after
perform process ThreeDsMethod. This step is optional in the authentication process. Required only

Examples

Errors

Continue Authentication

if ThreeDsMethod case is present.

After this method you have 2 options:

FRICTIONLESS - In response: authenticationStatus, transactionXId, cavv, eci and
threeDsMode = FRICTIONLESS are present. This response denotes that authentication
was finished.
CHALLENGE - In response: acsUrl, creq, challengeHtmlFormBase64 and threeDsMode =
CHALLENGE are present. This response denotes that you should perform challenge. After
executing challenge, make a request for the method: Finalize Authentication

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-jwe-
encryption-body+json

Optional Header must be present if
the request body is
encrypted using the JWE
standard.

X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

threeDsMode = FRICTIONLESS.

Request

Request headers

Request fields

Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

threeDsMode = CHALLENGE.

X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "authenticationId": "authenticationId",
 "authenticationStatus": "Y",
 "transactionXId": "9742432a-dfdc-41ca-9ae9-b6595de65f1d",
 "cavv": "jEu04WZns7pbARAApU4qgNdJTag",
 "eci": "02",
 "threeDsMode": "FRICTIONLESS"
}

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

{
 "authenticationId": "authenticationId",
 "acsUrl": "https://acs-url.verestro.com/mock-acs",
 "creq":
"eyJjYXJkQXV0aGVudGljYNmODlhLTk2MjQtNGQ1OS04NzZmLTNkMWViYTcyNzM3NiIsIm5vdGlmaWNhdGlvblVybvd
2ViaG9vay5zaXRlLzE5ODI3MWMyLTljYWYtNGEyMy05ZGJiLWRlZTc3ODExMDdlOSIsInRocmVlRFNTZXJ2ZXJUcmFuc
0lEIjoiM2ZhZjBmMWQtM2YxNy00MTJmLWJiNDItOGQ3ZGEzYzQ2Njk5IiwibWVzc2FnZVZlcnNpb24iOiIyLjEuMCJ9",
 "challengeHtmlFormBase64":
"PGh0bWw+PFNDUklQVCBMQU5mF2YXNjcmlwdCI+ZnVuY3Rpb24gT25Mb2FkRXZlbW1lbnQuZG93bmxvYWRGb3J
tLnN1Ym1pdCgpOyB9PC9TQ1JJUFQ+PGJvZHkgT25Mb2FkmVudCgpOyI+PGZvcm0gbmFtZT0iZG93bmxvYWRGb3Jt
IiBhY3Rpb249Imh0dHBzOi8vbXBpLXN0YWdpbmcuZmVuaWdlLnBsL21vY2stYWNzIiBtZXRob2Q9IlBPU1QiPjxJTlBVV
CB0eXBlPSJoaWRkZW4iXEiIHZhbHVlPSJleUpqWVhKa1FYVjBhR1Z1ZEdsallYUnBiMjVKWkNJNkltRmpZbU5tT0RsaEx
UazJNalF0TkdRMU9TMDROelptTFROa01XVmlZVGN5TnpNM05pSXNJbTV2ZEdsbWFXTmhkR2x2YmxWeWJDSTZJbW
gwZEhCek9pOHZkMlZpYUc5dmF5NXphWFJsTHpFNU9ESTNNV015TFRsallXWXROR0V5TXkwNVpHSmlMV1JsWlRjM

Base response fields
Path Type Description

authenticationId String Unique authentication identifier

authenticationStatus String Indicates whether a transaction
qualifies as an authenticated
transaction or account verification.
Possible values are:
Y - Authentication/account verification
successful
N - Not authenticated/account not
verified; transaction denied
U - Authentication/account
verification could not be performed;
technical or other problem as
indicated in ARes or RReq
A - Attempts processing performed;
not authenticated/verified, but a proof
of attempted
authentication/verification is provided
C - Challenge required; additional
authentication is required using the
CReq/CRes
R - Authentication/account verification
rejected; issuer is rejecting
authentication/verification and
request that authorization not be
attempted
D - Challenge required; decoupled
authentication confirmed
I - Informational only; ThreeDs
Requestor challenge preference
acknowledged
The CRes message can contain only a
value of Y or N. Values of D and I are
only applicable for ThreeDs version
2.2.0.

transactionXId String This field indicates the transactionXid
from recurring initial authentication.

09ERXhNRGRsT1NJc0luUm9jbVZsUkZOVFpYSjJaWEpVY21GdWMwbEVJam9pTTJaaFpqQm1NV1F0TTJZeE55MDBNV
EptTFdKaU5ESXRPR1EzWkdFell6UTJOams1SWl3aWJXVnpjMkZuWlZabGNuTnBiMjRpT2lJeUxqRXVNQ0o5Ij48SU5Q
VVQgdHlwZT0iaGlkZGVuIiBuYW1lPSJ0aHJlZURTU2Vzc2lvbkRhdGEiIHZhbHVlPSJZV05pWTJZNE9XRXRPVFl5TkMwM
FpEVTVMVGczTm1ZdE0yUXhaV0poTnpJM016YzIiPjwvZm9ybT48L2JvZHk+PC9odG1sPg==",
 "threeDsSessionData": "YWNiY2Y4OWEtONC00ZDU5LTg3NmYtM2QxZWJhNzI3Mzc2",
 "threeDsMode": "CHALLENGE"
}

Response fields

cavv String This property is determined by the
Access Control Server. This property
will be valid if the TransactionStatus is
"Y" or "A". The value may be used to
provide proof of authentication.

eci String This property is determined by the
Access Control Server. This property
contains the two digit Electronic
Commerce Indicator (ECI) value,
which is to be submitted in a credit
card authorization message. This
value indicates to the processor that
the customer data in the authorization
message has been authenticated. The
data contained within this property is
only valid if the TransactionStatus is
"Y" or "A".

acsUrl String If challenge is required, data for
building a form such as
challengeHtmlFormBase64

creq String If challenge is required, data for
building a form such as
challengeHtmlFormBase64

challengeHtmlFormBase64 String This field is a BASE64 encrypted html
source file containing the challenge 3-
D Secure frame

threeDsSessionData String ThreeDsSessionData value

threeDsMode String ThreeDs process mode which informs
about. One of: [FRICTIONLESS,
CHALLENGE]
FRICTIONLESS - this is where the
authentication process was finished.
CHALLENGE - next step is to execute
the challenge process. After it is done,
we need to make a request to the
method: Finalize Authentication

Request body with header: X-Encryption-Public-Key.

Method allows us to do finalize authentication using ThreeDs 2.0 protocol.

Examples

Finalize Authentication

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description

Authorization Mobile
bG9naW46YWNrbWU=

Required Device token with "Mobile "
prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-jwe-
encryption-body+json

Optional Header must be present if
the request body is
encrypted using the JWE
standard.

X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Base response fields
Path Type Description

authenticationId String Unique authentication identifier

Request

Request headers

Request fields

Response

Response fields

authenticationStatus String Indicates whether a transaction
qualifies as an authenticated
transaction or account verification.
Possible values are:
Y - Authentication/account verification
successful
N - Not authenticated/account not
verified; transaction denied
U - Authentication/account
verification could not be performed;
technical or other problem as
indicated in ARes or RReq
A - Attempts processing performed;
not authenticated/verified, but a proof
of attempted
authentication/verification is provided
C - Challenge required; additional
authentication is required using the
CReq/CRes
R - Authentication/account verification
rejected; issuer is rejecting
authentication/verification and
request that authorization not be
attempted
D - Challenge required; decoupled
authentication confirmed
I - Informational only; ThreeDs
Requestor challenge preference
acknowledged
The CRes message can contain only a
value of Y or N. Values of D and I are
only applicable for ThreeDs version
2.2.0.

transactionXId String This field indicates the transactionXid
from recurring initial authentication.

cavv String This property is determined by the
Access Control Server. This property
will be valid if the TransactionStatus is
"Y" or "A". The value may be used to
provide proof of authentication.

eci String This property is determined by the
Access Control Server. This property
contains the two digit Electronic
Commerce Indicator (ECI) value,
which is to be submitted in a credit
card authorization message. This
value indicates to the processor that
the customer data in the authorization
message has been authenticated. The
data contained within this property is
only valid if the TransactionStatus is
"Y" or "A".

Examples

The Money Transfer Android SDK specification is divided into 3 main components (SDK's) listed in
table below:

SDK link Description

Receivers This SDK is responsible for managing recipients

Transfers This SDK is responsible for managing money transfer

QR This SDK is responsible for processing and generating QR
codes

SDK documentation Android

https://developer-android.verestro.com/receiverssdk/1.0.0/documentation/
https://developer-android.verestro.com/transferssdk/1.0.0/documentation/
https://developer-android.verestro.com/qrsdk/1.0.0/documentation/

The Money Transfer iOS SDK specification is divided into 3 main components (SDK's) listed in table
below:

SDK link Description

Receivers This SDK is responsible for managing recipients

Transfers This SDK is responsible for managing money transfer

QR This SDK is responsible for processing and generating QR
codes

SDK documentation iOS

https://eclectic-granita-71de66.netlify.app/documentation/
https://heartfelt-scone-7e11ac.netlify.app/documentation/
https://cheerful-cajeta-2034e2.netlify.app/documentation/

