Money Transfers

Send money to cards and accounts. P2P, P2B, Card2Card, Payouts and more.

Introduction

Overview

Use cases

Technical Documentation

o Technical Documentation API

o SDK documentation Android

o SDK documentation iOS




Introduction

Quicko Money Transfer Hub supports card to card, card to account and other types of transfers.
The hub is integrated with various acquirers, banks and money transfer operators. It can initiate
Moneysend, Mastercard Send and VISA Direct transactions. Customer can recommend the Acquirer
through whom he wants to process transactions. Note that if the Customer requires the settlement
of the transaction by a new Acquirer, Quicko must create a new integration, which increases the
required development. The specification of the new Acquirer should be provided by the Customer.

How to connect with us?

Quicko provides access to the solution in various ways, depending on the Customer requirements.
This means that the Customer can access the Money Transfer Hub solution in three ways: ready-
made application, mobile SDK, REST API.

White Label Application

This is a fully ready to use solution developed in Android and iOS and prepared UX. To see the
appearance and the processes of the application from the point of view of the end user, please

check this link.

Mobile SDK

Verestro provides Software Development Kit (SDK) which can be used for mobile money transfer.
As a company Quicko provides many products which can be used in single application. For that
reason Wallet SDK is divided into separated modules which covers different functionalities.
Verestro team actively supports Customer with integration. More information about each module in

Mobile SDK can be found in iOS Transfers Documentation, iOS Receivers Documentation for iOS

implementation and Android Transfer Documentation, Android Receivers Documentation for
Android implementation. If the Customer wants to integrate through Verestro SDK, it is required to
create a customer account at Verestro Artifactory. To create such account, please contact the
Customer Service.

REST API


https://quickowallet.com
https://heartfelt-scone-7e11ac.netlify.app/documentation/
https://eclectic-granita-71de66.netlify.app/documentation/

Quicko provides Money Transfer APl which is implemented according to the REST model. This API
offers methods that allow not only to transfer money, but also to calculate commissions, collect
available currencies for a given balance or authenticate the user and his card. Verestro team
actively supports Customer with integration. More informations about Money Transfer APl can be

found here.


https://p2ptransactions.upaidtest.pl/docs/index.html

Overview

This section provides general information about the solution, terminology description and a high-
level description of the business and technical of the Money Transfer Hub.

Abbreviations

Abbreviations used in the document:

Abbreviations Description

ACQ Acquiring Institution/Acquirer
AP Admin Panel

ACS Access Control Server

ca2c Card to card

DC Data Core API

P2P Peer to peer API

MDC Mobile Data Core API

SDK Software Development Kit
THC Transaction History Core
oS Operative System

IBAN Bank Account Number
MCS20 Mastercard Send 2.0

URI Uniform Resource ldentifier
Mid Merchant Identifier

Terminology

This section explains a number of key terms and concepts used in this document:

Name Description



Customer

User

Card

Device

Session Token

Sender

Receiver

Mid

Acquirer

Institution which is using Verestro products. This institution
decides which SDK should be used and how transaction
should be processed. Basicly Customer can be called
Verestro client.

User which is using Money Transfer Hub Application. It is
root of entity tree. User is identified in Wallet Server by
some unique identifier which is provided after registration.
User can have access to his data and operations based on
session. User’s session is created after device pairing is
performed. When session expires then user authentication
have to be performed. Session is valid 10 minutes,
however it is configurable parameter.

Card belongs to the user. User can have many cards. Card
is identified via internal id given after storing card on
Wallet Server. Whole PAN is stored on Wallet Server which
has PCI DSS certificate.

Device belongs to user. When user starts using application
after installation then device pairing is performed. After
pairing device with some unique id, unique device
installation id is generated and this installation is assigned
to user. It is possible to have one active installation on
specific device for specific user.

Token which defines User. It is an authorization way of the
User. This entity is created after paring device and this is
needed to perform any actions in the application. When
session is expired then user authentication needs to be
performed. Session is valid 10 minute s, however it is
configurable parameter.

Verestro Wallet user which triggers transaction to the
Receiver (check User description).

Entity which gets funds sent by Sender. Receiver can be
identified in Wallet Server (Internal) or may be an entity
that does not exist in Wallet Server (External)

o Internal (Wallet) - this type of Receiver has his own
unique identifier just like sender. It can also act as a
Sender in the transaction process,

o External - this type of Receiver does not exist in Wallet
Server. Transfers that are made to this type of Receiver
require the entering of his card data by Sender

Merchant identifier. This entity is representing Merchant in
Acquirer’s system. Customer have to provide the mid
information to enable mid configuration in the Verestro
system. Required to process 3DS authentication via
Verestro System.

External institution responsible for processing transaction
and 3ds requests ordered by the Verestro Money Transfer
Hub Application. Acquirer connects with banks / card
issuers and returns information whether the ordered action
on a given card is possible.



PAN It is 7-15 digits of credit card number. These digits contain
the Permanent Account Number (PAN) assigned by the
bank to uniquely identify the account holder.

Wallet Server Provides the backend services to support Mobile Payment
Application via Verestro Wallet SDK and is responsible for
managing users, devices, cards , device tokens, storing
transactions history and communication with Acquirers.

PCI DSS PCI DSS (Payment Card Industry Data Security Standard) is
a security standard used in environments where the data
of payment cardholders is processed. The standard covers
meticulous data processing control and protection of users
against violations.

IBAN IBAN (International Bank Account Number) is an
international standard for bank account numbering that
allows you to transfer funds to foreign accounts and to
receive transfers from foreign entities to domestic bank
accounts. One of the assumptions of the IBAN standard is
to simplify the system of cross-border transfers.

QR QR code is a type of barcode or scannable pattern that
contains various forms of data like website links, account
information, phone numbers, or even entire object of the
transaction.

Card to card transaction

Card to Card Payments (C2C) is a technology which enables peer to peer transfer via mobile
device. This functionality allows banks and payment institutions to perform transactions from
Sender card to the Receiver card. In the first setting, the settlement agent performs Funding, in the
next, it pushes funds by making Payment. In this type of transaction, Funding is possible only for
users strongly verified using the 3DS Authentication method, which is described later in the
document and it is an individual requirement depending on the Settlement Agent.

Card to card transaction high level
overview

This diagram shows high level components which are involved in whole solution.

image-1658903579159.png

Card to card transaction key components

Component Description


https://developer.verestro.com/uploads/images/gallery/2022-07/image-1658903579159.png

Verestro Wallet Server

Verestro P2P Wallet SDK

Notification Service

Admin Panel

Backend services of Money Transfer solution. In the
described product, they are responsible for adding /
keeping the context of the user and the card in the
database, user authentication, calculate commissions,
forwarding a transaction and 3ds authentication requests
to various Acquirers or keeping transaction history.

A set of functionalities that allow to handle user requests
and provide the required information to backend services
which are required by Acquirers in C2C transfers. Simply
put, this component allows to take advantage of the
possibilities offered by Verestro Wallet Server.

Delivers all necessary information about transaction
statuses and other actions which was performed between
individual Verestro backend components and/or external.

Frontend component that allows Customer to check
transaction statuses and transaction history of his clients.

Verestro Money Transfer Hub also supports transfers using a QR code. Transfers using the
QR code are described in a separate document.

Mastercard Send 2.0

Mastercard Send 2.0 is a technology which enables peer to peer transfer via mobile device. This
functionality allows banks and payment institutions to perform transactions using cards, IBANs,
QRs or other URI. Each transaction pushed to Mastercard is settled with the payment institution /
bank registered in this program on a settlement basis (collective invoice 1 per day).

Mastercard Send 2.0 technology is available only in the test environment

MC Send 2.0 Payments high level

overview

This diagram shows high level components which are involved in whole solution.

image-1658903536789.png

MC Send Payments Key Components

Component

Description


https://developer.verestro.com/uploads/images/gallery/2022-07/image-1658903536789.png

Verestro Wallet Server

Verestro P2P Wallet SDK

Notification Service

Admin Panel

Backend services of Money Transfer solution. In the
described product, they are responsible for adding /
keeping the context of the user and the card in the
database, user authentication, calculate commissions,
forwarding a transaction requests to Mastercard Send 2.0
or keeping transaction history.

A set of functionalities that allow to handle user requests
and provide the required information to backend services
which are required in Mastercard Send 2.0. Simply put, this
component allows to take advantage of the possibilities
offered by Verestro Wallet Server.

Delivers all necessary information about transaction
statuses and other actions offered by Money Transfer
which was performed between individual Verestro backend
components and/or external.

Frontend component that allows Customer to check
transaction statuses and transaction history of his clients.

Verestro Money Transfer Hub

Verestro Money Transfer Hub is a solution that was created to make it easier for customers to
make quick transfers between two entities - Sender and Receiver. Money Transfer Hub provides
functionalities for the management, identification and verification of Users and the possibility of
making transfers based on specific methods of data transfer, such as internal user identifiers, data

entered basicly "from the finger", QRs etc.
Solution consists of:

e Server components:

o Wallet Server - backend component,

o Wallet Admin Panel - frontend component,
e Mobile components:

o Wallet SDK - Android / iOS libs.

Wallet Types

Money Transfer Hub Solution supports one type of
implementation:

wallet which can be used in the

e OPEN - user registers itself in the application and provides data like PAN etc.

Note that the Receiver is not required to be a client of the application. The Sender can perform

transactions to external Receivers this way as well.



Implementation models

Verestro provides three different implementation models for products: REST API, mobile SDK and
standalone version.

REST API

In this model Verestro provides Money Transfer Hub APl methods. Customer is responsible for
integration with provided API methods with his own application and manage User authentication
(based on MDC SDK).

Mobile SDK

In this model Customer is owner of Money Transfer Hub Solution. Verestro provides Wallet SDK and
Wallet Server. Customer is responsible for integrate provided SDK with his own application and
manage User authentication (based on MDC SDK). More information about each module in Mobile

SDK can be found in iOS Transfers Documentation, iOS Receivers Documentation for iOS

implementation and Android Transfer Documentation, Android Receivers Documentation for
Android implementation.

Standalone

In this model Verestro provides whole Money Transfer Hub Solution: “Ready to use” application
with implemented SDK. Furthermore, Verestro manages direct User authentication.

Architecture

This diagram shows big picture of Verestro Money Transfer Hub architecture.

image-1658908839784.png

Server Components

Server components are backend services which are designed to process requests from the mobile
part, provide the necessary information such as user ID and communicate with Acquirers.

Deployment Models

In Money Transfer Hub Solution Server components are deployed and configured on Verestro side.
Verestro is responsible for maintaining infrastructure, deploying applications and monitoring.

Wallet Server

Wallet Server is the backend component which consists of few internal services which are
responsible for managing users, cards, IBANs, security tokens, transactions and transactions


https://heartfelt-scone-7e11ac.netlify.app/documentation/
https://eclectic-granita-71de66.netlify.app/documentation/
https://developer.verestro.com/uploads/images/gallery/2022-07/image-1658908839784.png

history. This component is also responsible for connection with Acquirers. Services included in the
Wallet Server component can be divided into two groups:

e Services that are part of the Money Transfer Solution.
e Services supporting the functionalities offered by Money Transfer Solution.

List of services which are the part of the Money Transfer Solution:

e Mobile API - available via Wallet SDK to performs operations directly from mobile device,
performs client app authentication.

e Wallet Mobile SDK - The mobile part of the Money Transfer solution. Responsible for
forwarding customer requests to the appropriate Verestro backend components. All key
processes such as logging in, authentication or transaction take place through this
component.

e Money Transfer APl - One of the Verestro backend services. This service handles requests
from Verestro Wallet SDK and communicates with other Verestro internal services which
are supporting the Money Transfer solution. Money Transfer Hub API is also responsible for
communication with the Acquirer.

List of services which are supporting the functionalities offered by Money Transfer Solution (each of
the services listed below has dedicated documentation):

e LC API - server API dedicated for Issuer to manage users and cards data on Wallet Server.
Connection is secured using VPN,

e MDC API - server API which is responsible for providing access token to Mobile API. It is
also an intermediary between the mobile SDK and Data Core,

e DC API - server APl which stores card and user data,

e Admin Panel - frontend application which allows Customer to check transaction status
and/or history,

e Midas API - server API integrating Acquirers and their individual 3ds authentication
strategies. Additionally Midas API stores mid configuration,

e THC API - server API responsible for keeping transaction history. The data stored in the
THC APl is used by the Admin Panel.

Wallet Server operates with domain objects like:

User (Sender) - User which is using Money Transfer Hub Application,

Session Token - Token which defines User. It is an authorization way of the User,
Device - This entity is created after user registration and is required to login the User,
Card - User Card which can be charged or recharged,

Receiver - Verestro Wallet user or external entity which receives funds from the Sender,
IBAN - belongs to user. User can have many IBANs. IBAN is identified via id which is
sha256Hex value of IBAN. One IBAN can be assigned to multiple users.

More detailed information about objects above are described in Terminology chapter.

Wallet Admin Panel



Wallet Admin Panel - web frontend application which is dedicated for Customer to follow user’s
transactions. Using the admin panel, the customer can also add his users to the Verestro Wallet
database.

This component is not a part of the Money Transfer Solution but it is supporting some features. For
more information about Wallet Admin Panel see “Verestro Wallet Admin Panel Documentation”.

Mobile Components

Mobile components are dedicated for using on Android and iOS mobile devices.

Wallet SDK

Verestro provides Software Development Kit (SDK) called Wallet SDK which can be used for mobile
money transfer. As a company Verestro provides many products which can be used in single
application. For that reason Wallet SDK is divided into separated modules which covers different
functionalities. There are two main modules dedicated for Verestro Money Transfer Hub Solution:
P2P SDK and QR SDK. P2P SDK provides user data management such as authentication and
payment cards management. It is also responsible for initiating peer to peer transactions and for
adding individual recipients to “favorites”.

QR SDK is responsible for creating the appropriate QR code, parse it and for transferring the data
contained in this code. Based on such data, a transaction will be initiated.

Note that both SDKs are separated. This means that the for example P2P SDK will not have
components that have a QR SDK.

Below is a detailed list of SDKs included in Mobile Components:

e P2P Transfers SDK - supports the process of generating and reporting transactions. The
share of this module in the application takes its payment functions to a higher level,
enabling the initiation of transfers to a card, telephone number or QR code (for more
technical information please check “P2P Transfer SDK documentation”).

e P2P Receivers SDK - supporting module that improves the service of senders. The function
allows you to store a list of recipients for a given user and to obtain data for transaction
initiation to a telephone number (for more technical information please check “P2P
Receivers SDK documentation”).

e QR SDK - The QR module was designed to work with the applicable MPQR (Merchant
Presented QR) standard developed by EMV. Thanks to the integration of this module with
P2P and meeting the requirements of Mastercard, the user will be able to pay with sellers
using QR codes. An additional functionality is that the user can use the code generated for
his card and thus receive funds from other people within one implementation (for more
technical information please check “QR SDK documentation”).

Access

The account at Verestro Artifactory is required to get access to Verestro repository.



Versioning

SDK version contains three numbers. For example: 1.0.0.:
(For more information check what is “Semantic Versioning” standrand)

e First version digit tracks compatibility-breaking changes in SDK public APIs. It is
mandatory to update application code, to use SDK, when this is incremented.

e Second version digit tracks new, not compatibility-breaking changes in public API of SDK.
It is optional to update application code, when this digit is incremented.

e Third version digit tracks internal changes in SDK. No updates in application code are
necessary to update to version, which has this number incremented.

Changes not breaking compatibility:

e Adding new optional interface to SDK setup,
e Adding new method to any domain,

e Adding new enum value to input or output,
e Adding new field in input or output model.

Communication with Wallet Server

Wallet SDK at the very beginning performs authentication of application and device to Wallet
Server.

Security

MDC SDK is responsible for most of the security issues. However, in the Money Transfer Hub
solution, sensitive data such as PAN or CVC are processed. They are taken as an array of
characters. This data is not held, but immediately wiped from RAM.

Security Checks and Data Clearing

There are performed security checks on Wallet SDK side. Security checks consists of:

root access detection,
hooking protection,
debugging protection,
custom ROM protection,

e data tampering protection.

Requirements

Wallet SDK has some mandatory requirements to make it work:

e device cannot be rooted,
e Android OS should be in version 6.0 or above,
¢ iOS OS should be in version 13.0 or above,



e devices cannot have enabled debugging,
e MDC SDK integration.

Configuration

The entire solution requires configuration data necessary for the product to operate in line with the
Customer's expectations. The most important information is:

e Product’s name - this name will be representing a given Issuer in Verestro system,

e How transactions are reported to THC - this point tells about what type of transactions
and transactions with what status will be reported to the transaction history database. For
example:

o whether the transaction should be stored in THC while at the funding stage or only
when the recipient's account top-up has been performed,

o whether transactions with FAILED status should be reported or only successful
transactions,

e To which ACQ we should send the transaction request,

e Whether the product is supposed to support 3DS or not,

o If the Product supports 3DS, Verestro have to integrate into this process with a given
ACQ (unless it has already been done),

o If the Product supports 3DS, the Customer have to provide the data of his account
created in the ACQ’s system such as login, password, merchant Id (mid) and
terminal Id if exists (unless the whole mid configuration already has been done in

Verestro system).



Use cases

This section describes a detailed description of the processes provided in the solution and the
appearance of the application from the end user point of view.

Wallet Server MDC API

This section describes use cases which can be initiated using Wallet Server MDC API. This API
should be used by Customers through integrated Money Transfer Wallet SDK to manage Users and
cards data on Wallet Server.

User with Card registration

User with Card Registration is process when user and cards are transferred to Wallet Server to
make possible use them in different processes (e.g. money transfer) later in the application.
Registration can be done when user starts using Verestro Money Transfer Application. Basically
User have to provide all necessary personal and card data to start using application. This data goes
through the Mobile SDK to MDC API which will return session token. MDC API is also responsible for
the subsequent user authentication.

It is required to perform card strong verification. The 3ds card verification will be started by
application after adding card.

This diagram shows high level User registration process.

@startuml

skinparam ParticipantPadding 30
skinparam BoxPadding 30

skinparam noteFontColor #FFFFFF
skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F
skinparam noteBorderThickness 1
skinparam sequence {

ArrowColor #1C1E3F

ArrowFontColor #1C1E3F
ActorBorderColor #1C1E3F
ActorBackgroundColor #FFFFFF
ActorFontStyle bold
ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F



ParticipantFontColor #FFFFFF

ParticipantFontStyle bold

LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F

}

participant "User" as user

participant "Mobile App" as mob

participant "Verestro Mobile SDK" as sdk

participant "Verestro Mobile Data Core" as mdc
participant "Verestro Data Core" as dc

note right of user: User initiates registration
user->mob: 1. Registration

mob->sdk: 2. Provides User's data

sdk->mdc: 3. Provide User's data

mdc->mdc: 4. Validates request

user<-mdc: 5. Sends SMS OTP / Activation link
user->mob: 6. Activates account

mob->sdk

sdk->mdc: 7. Provides User's data and pair device with User
mdc->dc: 8. Store user

mdc<-dc: 9. User added to Wallet collection
mob<-mdc: 10. Registration success

user<-mob: 11. Your account has been successfully registered
user->mob: 12. Login

mob->sdk: 13. Provides login data

sdk->mdc: 14. Check if provided login data are valid
sdk<-mdc: 15. Success - returns session token
mob<-sdk: 16. Login success

user<-mob: 17. Login success

@enduml

This diagram shows high level card registration process.

@startuml

skinparam ParticipantPadding 30
skinparam BoxPadding 30

skinparam noteFontColor #FFFFFF
skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F
skinparam noteBorderThickness 1
skinparam sequence {

ArrowColor #1C1E3F

ArrowFontColor #1C1E3F
ActorBorderColor #1C1E3F
ActorBackgroundColor #FFFFFF



ActorFontStyle bold

ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF

ParticipantFontStyle bold

LifeLineBackgroundColor #1C1E3F

LifeLineBorderColor #1C1E3F

}

participant "User" as user

participant "Mobile App" as mob

participant "Verestro Mobile SDK" as sdk

participant "Verestro Data Core" as dc

participant "Bank" as bank

note right of user: User initiates card registration and provides necessary data (first and last name,
card no, cvc, exp date, password)

user->mob: 1. Provides card data

mob->sdk: 2. Provides obtained card data

sdk->dc: 3. Provide obtained card data

dc->dc: 4. Add card to Verestro Wallet

sdk<-dc: 5. Card has been added to Verestro collection
mob<-sdk: 6. Success

user<-mob: 7. Card added - perform strong verification
note right of user: User starts card verification process
mob->sdk: 8. Verify card

sdk->dc: 9. Verify card

dc->bank: 10. Check if provided card data are valid and perform 3ds
dc<-bank: 11. Success

dc->dc: 12. Changes card verification level

sdk<-dc: 13. Card strong verified

mob<-sdk: 14. Card strong verified

user<-mob: 15. Your card has been successfully verified
@enduml

Wallet Server Money Transfer API

This section describes use cases which can be initiated using Wallet Server P2P API. This API should
be used by Customers through integrated Money Transfer Wallet SDK to manage Transactions and
Transaction’s Senders/Receivers, Commission calculation and determine Currencies on Wallet
Server. Every method below is secured by session token.

or more information about session token, please see "User with Card registration".



Receiver management

In order to make any transaction, it is necessary to determine who the funds will be sent to. This
section presents the method of collecting the Receiver’s data so that the Sender can order a
transfer of funds. To illustrate this process, two sequence diagrams were made as there are two
Receiver types in the Money Transfer Hub solution - Internal Receiver and External Receiver.
For more information about Receiver types, please see "Terminology".

This diagram shows high level External Receiver management.

@startuml

skinparam ParticipantPadding 30

skinparam BoxPadding 30

skinparam noteFontColor #FFFFFF

skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F

skinparam noteBorderThickness 1

skinparam sequence {

ArrowColor #1C1E3F

ArrowFontColor #1C1E3F

ActorBorderColor #1C1E3F

ActorBackgroundColor #FFFFFF

ActorFontStyle bold

ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF

ParticipantFontStyle bold

LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F

}

participant "User" as user

participant "Mobile App" as mob

participant "Verestro Mobile SDK" as sdk

participant "Verestro Money Transfer API" as p2p
participant "Verestro Data Core" as dc

note right of user: User initiates money transfer
user->mob: 1. User opens contacts list

mob-->sdk

sdk->p2p: 2. Which contacts exist in Verestro Wallet?
p2p->dc: 3. Which contacts exist in Verestro Wallet?
note left of dc: Check by phone number provided by Wallet SDK
p2p<-dc: 4. Provides existing Receivers IDs
sdk<-p2p: 5. nProvides existing Receivers IDs
mob<-sdk: 6. Returns information which contact exists in Verestro Wallet



note right of user: Receiver existing in Verestro Wallet will be highlighted

user->mob: 7. Chooses Receiver existing in Verestro Wallet from contacts

note right of user: In this case all Receiver's necessary data are provided by Verestro Server
user->mob: 8. Confirms chosen Receiver

@enduml

In this process all Receiver’s data are stored in Verestro Wallet Server as Receiver is also Verestro
Wallet user.

This diagram shows high level External Receiver management.

@startuml

skinparam ParticipantPadding 30

skinparam BoxPadding 30

skinparam noteFontColor #FFFFFF

skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F

skinparam noteBorderThickness 1

skinparam sequence {

ArrowColor #1C1E3F

ArrowFontColor #1C1E3F

ActorBorderColor #1C1E3F

ActorBackgroundColor #FFFFFF

ActorFontStyle bold

ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF

ParticipantFontStyle bold

LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F

}

participant "User" as user

participant "Mobile App" as mob

participant "Verestro Mobile SDK" as sdk

participant "Verestro Money Transfer API" as p2p
participant "Verestro Data Core" as dc

note right of user: User initiates money transfer
user->mob: 1. User opens contacts list

mob-->sdk

sdk->p2p: 2. Which contacts exist in Verestro Wallet?
p2p->dc: 3. Which contacts exist in Verestro Wallet?
note left of dc: Check by phone number

p2p<-dc: 4. Provides existing Receivers IDs
sdk<-p2p: 5. Provides existing Receivers IDs
mob<-sdk: 6. Returns information which contact exists in Verestro Wallet
note right of user: Receiver existing in Verestro Wallet will be highlighted



user->mob: 7. Chooses Receiver which doesn't exist in Verestro Wallet from contacts

note right of user: In this case Sender is responsible for provide all data which application requires
to perform transfer

user->mob: 8. Confirms provided necessary Receiver's data

@enduml

In this process all Receiver’'s necessary data should be provided by Sender. Provided data will be
validated by Verestro to confirm they are correct - for example is provided card number is
compatible with Luhn alghorithm.

Determine currency and calculate
commission

Before making a transfer, Sender needs to know what currencies the card supports. This is the first
step in the Money Transfer card to card transaction process. Information about the currencies
supported by the card is provided by Acquirer by contacting the card Issuer.

The next and equally important step is to calculate the commission for the transfer and possibly
currency conversion. The currency conversion fee and information about the current exchange rate
are provided by Acquirer.

Acquirer receives a file with current rates from Mastercard or VISA every day and keeps it on his
side.

This diagram shows high level determine currency and calculate commission processes.

@startuml

skinparam ParticipantPadding 30
skinparam BoxPadding 30

skinparam noteFontColor #FFFFFF
skinparam noteBackgroundColor #1C1E3F
skinparam noteBorderColor #1C1E3F
skinparam noteBorderThickness 1
skinparam sequence {

ArrowColor #1C1E3F

ArrowFontColor #1C1E3F
ActorBorderColor #1C1E3F
ActorBackgroundColor #FFFFFF
ActorFontStyle bold
ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF
ParticipantFontStyle bold
LifeLineBackgroundColor #1C1E3F
LifeLineBorderColor #1C1E3F



}

participant "User" as user

participant "Mobile App" as mob

participant "Verestro Mobile SDK" as sdk

participant "Verestro Money Transfer API" as p2p

participant "Acquirer" as acq

note left of mob: User has chosen Receiver

user->mob: 1. Chooses Receiver

mob->sdk: 2. Provides chosen Receiver data

sdk->p2p: 3. Determines available currencies

note left of sdk: All data was provided during the Receiver selection process
p2p->acq: 4. Gets available currencies from Acquirer

p2p<-acq: 5. Provides available currencies

sdk<-p2p: 6. Provides available currencies

mob<-sdk: 7. Returns obtained currencies

user<-mob: 8. Shows available currencies

note right of user: User sees chosen Receiver and available currencies
user->mob: 9. Provides amount to be transferred and chooses currency
mob->sdk: 10. Provides chosen amount and currency

sdk->p2p: 11. Calculate commission

p2p->acq: 12. Get actual currency rates if chosen currencies are different
note left of acq: Acquirer has actual currency rates which is provided to him by MC or VISA
p2p<-acq: 13. Returns requested actual currency rates

sdk<-p2p: 14. Provides actual currency rates

mob<-sdk: 15. Provides actual currency rates

user<-mob: 16. Shows actual currency rates

user->mob: 17. Confirms Money Transfer

@enduml

In this process, the Sender sees what additional charge will be made after the transfer is processed
and then decides whether the transfer of funds is to be made.

3DS Authentication

The Money Transfer Hub Solution supports the 3DS 2.0 process and it is required when user is
initiating a transaction. This is an authentication method based on the alleged cardholder data
check, biometric authentication and improved customer experience.

As mentioned in the "Configuration" paragraph, a specific 3DS integration is required depending on
which ACQ Verestro will connect to when making a transaction.

e If the integration with a given ACQ has already been made, Verestro only need to
configure the appropriate merchant identifier, which should be provided by the Customer.



If the integration with the required billing agent has not yet been completed, it will be one of the
activities for which Verestro will be responsible. Note that integration with 3DS increases the scope
of required development.

In card to card transfer, the authentication process is required. It is to confirm that the user is
definitely the owner of the card.

This diagram shows high level 3ds authentication processes.

@startuml

skinparam ParticipantPadding 30

skinparam BoxPadding 30

skinparam noteFontColor #FFFFFF

skinparam noteBackgroundColor #1C1E3F

skinparam noteBorderColor #1C1E3F

skinparam noteBorderThickness 1

skinparam sequence {

ArrowColor #1C1E3F

ArrowFontColor #1C1E3F

ActorBorderColor #1C1E3F

ActorBackgroundColor #FFFFFF

ActorFontStyle bold

ParticipantBorderColor #1C1E3F

ParticipantBackgroundColor #1C1E3F

ParticipantFontColor #FFFFFF

ParticipantFontStyle bold

LifeLineBackgroundColor #1C1E3F

LifeLineBorderColor #1C1E3F

}

participant "User" as user

participant "Mobile App" as mob

participant "Verestro Mobile SDK" as sdk

participant "Verestro Money Transfer API" as p2p

participant "Acquirer" as acq

participant "Mastercard/VISA" as mcvisa

participant "ACS/Issuer" as acs

note left of mob: User has confirmed currencies and accepted shown currency rate
user->mob: 1. Enters CVC code

note left of mob: In this step the application begins 3DS authentication process.
note left of mob: If the bank decides that 3ds is not required, not any action will be performed.
note left of mob: Diagram shows the option requiring the user to authenticate.
mob->sdk: 2. Initialize 3DS process

sdk->p2p: 3. Initialize 3DS process

p2p->acq: 4. Initialize 3DS process

note left of acs: Bank returns decision whether it is necessary for the user to authenticate
acg->mcvisa: 5. Is 3DS authentication required?

acg<-mcvisa: 6. ThreeDS Method



p2p<-acq: 7. ThreeDS Method

p2p->acq: 8. Continue 3DS process

acg->acs: 9. Continue 3DS process

acg<-acs: 10. Challenge required

p2p<-acq: 11. Challenge required

sdk<-p2p: 12. Challenge required

mob<-sdk: 13. Challenge required

user<-mob: 14. Informs user that challenge is required

note left of mob: Bank's page content is provided
user->user: 15. Performs challenge

note right of user: After a successful challenge, the Bank sends PaRes/cRes, which is intercepted by
the Wallet SDK and provided to the Money Transfer API
user-->mob

mob-->sdk

sdk->p2p: 16. Provides intercepted PaRes/cRes

p2p->acq: 17. Provides obtained PaRes/cRes

acqg->acs: 18. Check authentication for provided PaRes/cRes
acg<-acs: 19. Authentication success

p2p<-acq: 20. Authentication success

sdk<-p2p: 21. Authentication success

mob<-sdk: 22. Authentication success

user<-mob: 23. Informs about the successful completion of the authentication process
@enduml

To facilitate understanding of the process flow, each of the steps is described below in the correct
order (points highlighted in blue are performed outside the Verestro Server):

1. Mobile application contacts the Verestro Server via the Verestro Mobile SDK to start 3ds
process.

2. Mobile SDK provides all necessary data to the Money Transfer API (including user/card id
and 3ds authentication request id) while calling the 3ds initialization method.

3. Having all the necessary information, Money Transfer APl orders Acquirer to start the 3ds
authentication process.

4. Acquirer transfers the card and user details to ACS.

5. If the user is the owner of the card, the ACS returns a positive answer and a decision
whether the continuation of the authentication process is required (according to the
diagram above, the scenario with the necessity to continue the process is described).

6. ACS informs the Acquirer that the 3ds process continue is required.

Acquirer informs Money Transfer APl about ACS decision.

8. Money Transfer APl requests Acquirer to continue the authentication process (the
authentication id is provided.
9. Acquirer provide the request to continue the process to the ACS.

10. ACS informs about the necessity to perform the Challenge process and returns necessary

parameters such as:

~



1. challengeHtmIFormBase64 - this field is a BASE64 encrypted html source file
containing the ACS’ challenge 3DSecure frame
2. cReq - data for building a form such as challengeHtmIFormBase64
11. Acquirer informs Verestro Money Transfer API that ACS requires Challengeand provides
above parameters.
12. Verestro Money Transfer APl forwards the obtained information to Verestro Mobile SDK.
13. Verestro Mobile SDK decodes the received challengeHtmIFormBase64 parameter and
transmits the received frame of the mobile application.
14. The user is redirected to the bank's website where he performs the Challenge process.
15. After a successful Challenge process, the bank sends the cRes / PaRes parameter. This
response is intercepted by the Verestro Mobile SDK and forwarded to the Verestro Money
Transfer API.
16. Verestro Money Transfer API provides the received cRes / PaRes to Acquirer.
17. Acquirer provides the above parameters to ACS for verification.
18. If everything was done correctly, the ACS informs Acquirer about the successful
completion of the 3ds authentication. Among other things, the following parameters are
included in the response
1. cavv - property determined by the ACS. The value may be used to provide proof of
authentication

2. eci - property is determined by the ACS. This property contains the two digit
Electronic Commerce Indicator (ECI) value, which is to be submitted in a credit card
authorization message

19. Acquirer provides information about successful completion of the 3ds authentication
among with the above parameters obtained from the ACS to Verestro Money Transfer API.

20. Verestro Money Transfer APl provides information about successful completion of the 3ds
authentication among with the above parameters obtained from the ACS to Verestro
Mobile SDK.

21. Verestro Mobile SDK provides positive response to mobile application. The information is
shown to the user.

Transaction process

If the user and his card are present in the Verestro system, such a user can perform transactions
using the Money Transfer Hub solution.

Card to card money transfer

This type of transaction allows Sender to make money send transfers from card to card. The
transaction is secured by the 3DSecure process.

This diagram shows high level money transfer card to card processes.



@startuml

skinparam ParticipantPadding 30

skinparam BoxPadding 30

skinparam noteFontColor #FFFFFF

skinparam noteBackgroundColor #1C1E3F

skinparam noteBorderColor #1C1E3F

skinparam noteBorderThickness 1

skinparam sequence {

ArrowColor #1C1E3F

ArrowFontColor #1C1E3F

ActorBorderColor #1C1E3F

ActorBackgroundColor #FFFFFF

ActorFontStyle bold

ParticipantBorderColor #1C1E3F
ParticipantBackgroundColor #1C1E3F
ParticipantFontColor #FFFFFF

ParticipantFontStyle bold

LifeLineBackgroundColor #1C1E3F

LifeLineBorderColor #1C1E3F

}

participant "User" as user

participant "Mobile App" as mob

participant "Verestro Mobile SDK" as sdk

participant "Verestro Money Transfer API" as p2p
participant "Verestro Data Core" as mdc

participant "Verestro THC API" as thc

participant "Acquirer" as acq

participant "Issuer" as acs

note left of mob: User has passed 3DS authentication process
mob->sdk: 1. Perform money transfer

sdk->p2p: 2. Perform money transfer

p2p->mdc: 3. Check if provided card belong to the user
p2p->mdc: 4. Check if provided card belong to the receiver
p2p<-mdc: 5. OK

p2p<-mdc: 6. OK

p2p->acq: 7. Money send

acqg->acs: 8. Peform Funding from provided card if possible
acg<-acs: 9. Success

acg->acs: 10. Perform Credit for Receiver account
acg<-acs: 11. Success

p2p<-acq: 12. Success + transaction id

note left of p2p: Receiver will be added to "favourite" in Senders contacts if checkbox has been
checked - optional

p2p->thc: 13. Store transaction with status Funding
p2p<-thc: 14. Transaction has been stored successfully
sdk<-p2p: 15. Transaction success



mob<-sdk: 16. Transaction success
user<-mob: 17. Your transaction has been sent
@enduml

After ordering the transfer, Wallet Mobile SDK forwards request to the Wallet API. Wallet APl in turn
forwards the request to the Acquirer. Based on the data received, the Acquirer contacts the bank to
complete the transaction. If the bank agrees, the funding process is carried out - collecting funds
from the Sender's account. After the funding is completed, the funds are transferred to the
appropriate Receiver.

To facilitate understanding of the process flow, each of the steps is described below in the correct
order (points highlighted in blue are performed outside the Verestro Server):

1. After going through the 3ds process, the funds transfer process begins,

2. The application orders the transfer of funds by communicating with the Verestro backend
via the Verestro Mobile SDK,

3. Money Transfer API communicates with Data Core to check whether the card details
belong to the user and the receiver,

4. After receiving a positive response from Data Core, Money Transfer APl performs money

send transaction,

Acquirer receives a request to make a transfer of funds,

The Acquirer communicates with the Issuer regarding the execution of the transfer,

The Sender's account is debited,

The Receiver’s account is credited,

The Acquirer receives information from the Issuer that the operation has been performed,

10. Acquirer informs Money Transfer APl about the positive status of the ordered operation,

11. Money Transfer APl saves transaction details in the Transaction History Core API,

12. Money Transfer APl informs Mobile SDK about the positive status of the ordered operation,

13. Mobile SDK informs Mobile Application about the positive status of the ordered operation,

14. The Mobile Application displays to the user a successful transfer of funds.

© 0N o u

Verestro Money Transfer Hub also supports transfers using a QR code.
Transfers using the QR code are described in a separate document.

Application flow

This chapter introduces the main actions and processes in the application from the end
user point of view.

User registration flow



Invoking registration is usually the primary activity right after the first launch of the application.
User registration, depending on the configuration, requires providing data, including
authentication, which are at a later stage his login to the application. Required data are e-mail
address, telephone number, accepting tos, assigning a password to the account and assigning a
pin to the application.

The pictures below show the first step of the registration process:

image-1650446717200.png image-1650446725423.png image-1650446735943.png
On the screen above user registers in After clicking "Sign up" button, the After providing all the necessary data,
to application by clicking “Sign up” user is redirected to the screen with the user can go to the next step of
button. the fields that must be filled in to registration by clicking the "Next"
register in the application. Fields button.
which are required: The “Next” button remains inactive
e E-mail, until all required fields are correctly
e Phone number, filled in.
e Password,

e Repeat password,
o Accept Terms &
Conditions.

image-1650446991254.png

In the screen beside the pop-up with regulations has been shown. This pop-up is displayed to the user after checking the
"Accept Terms & Conditions" checkbox. The user can accept the regulations by clicking the "Accept" button or reject it
by clicking the "Discard" button. Acceptance of the regulations is required to complete the registration process, and thus
to use the application.

The pictures below show the “Set up PIN” view:

image-1650447077291.png image-1650447083737.png

On the screen above user sets PIN of his account. To do such the user need to provide four digits
and repeat them - this prevents from making a mistake. To save new PIN the user must confirm
changes by clicking Confirm button. Button remains inactive unless

user provides new PIN and repeat it correctly. User is able to exit this section by clicking “<” button
in the upper left corner.

User login flow

The first login of the user takes place using the login and password. The login, depending on the
configuration, may be a telephone number or an e-mail address. When logging in, the user may
agree to log in to the application using biometrics, as long as his device supports such a solution.
Additionally, it is possible to reset the password in case the user forgets it.

The pictures below show the login process view with “use fingerprint” checkbox:


https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650446717200.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650446725423.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650446735943.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650446991254.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650447077291.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650447083737.png

image-1650448497416.png image-1650448506875.png

On the screen above user tries to
reset his password by providing his
email. Email must be valid.

On the screen above user logs in to
application. Sign in button remains
inactive unless user provides his
phone number and password. Phone
number and password must be valid.
Password can be reseted. User may
also login by fingerprint by checking
“Use fingerprint” checkbox.

image-1650448580854.png

Until the user enters the email, the
"SEND" button remains inactive. The
authorization code will be sent to
provided email.

The next login takes place in accordance with the settings selected by the user.

The pictures below show other possibilities of the login:

image-1650453306410.png image-1650453312442.png

On the screen above user logs in to
application using his fingerprint. To do
this, the user has to tap his finger on
the screen. It is also possible to use a
PIN by

clicking “Use PIN” button in the down
left corner of the screen.

clicking “MORE OPTIONS” button.

On the screen above user logs in to
application by PIN. PIN must be valid.
User may select more login options by

image-1650453318217.png

On the screen above user chooses
how he wants to log in.

Selecting the "Reset PIN" option will redirect the user to the following subpage:

image-1650453419929.png

In the screen beside user is able to reset PIN. To perform this action the user must authorize himself with his standard
password. The option of logging in with a standard password and resetting the password was presented earlier in the

chapter "User login flow". Possible errors:

e Invalid fingerprint,

e Invalid PIN,

e Too many failed attempts, user PIN,

e Too many failed attempts, user login and password.

Add card flow

The application, in cooperation with Verestro backend compliant with PCI DSS, provides the
possibility to perform operations on cards belonging to its owner. Adding a card from the outside
can be done by scanning its data with a camera built into the device or by manually entering its
data into the form. Adding such a card requires its verification by calling 3ds and is successfully

completed after the card issuer is authorized to use the card.

The pictures below show the possibility of the add card by scanning its data:

image-1650453901514.png

image-1650453909876.png


https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650448497416.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650448506875.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650448580854.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650453306410.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650453312442.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650453318217.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650453419929.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650453901514.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650453909876.png

On the screen above user adds his card by scanning its data using device camera. The user can
also add the card manually by selecting the option "enter card data manually".

The pictures below show the possibility of the add card by providing its details manually:

image-1650454118693.png image-1650454126225.png

On the screen above user provides card data and chooses whether this card will be the default one
or not. After providing all the necessary data, the user can confirm adding a card with the
"Confirm" button. The “Confirm” button remains inactive until all required fields are correctly filled
in.

After adding the card, the application will require its verification with the 3ds standard. To
authenticate, an SMS will be sent with a code to the phone number assigned to the user’s account.
This code should be entered in the designated place.

The pictures below show the 3ds process that the user must go through in order to be able to use
the added card in the application:

image-1650454217524.png image-1650454225732.png

Add address

The address module in the application can be used as a private, highly secured section for the
user's needs. In addition, it acts as a storage of the user's address, which, due to the legal
requirements regarding AML, is used during card transactions from the application level. The data
to be provided in the add address section are listed below:

e First name,

e Last name,

e Company name,
e Street,

e House number,
e Local number,

e Postal code,

e City,

e Phone number,
e NIP,

e Country,

e Checkbox - default address.

The pictures below show “adding address” view:

image-1650456748251.png image-1650456754093.png


https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650454118693.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650454126225.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650454217524.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650454225732.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650456748251.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650456754093.png

On the screen above user provides his address details. After providing all the necessary data, the
user can confirm adding an address with the "Confirm" button. The “Confirm” button remains
inactive until all required fields are correctly filled in.

image-1650456795698.png

On the screen beside user is able to whether update his address or delete it. In case of update each
field can be changed. User can confirm his changes by clicking “Confirm” button. This button
remains inactive until all required fields are correctly filled in. By checking “My address” checkbox,
the user confirms that this is his default address. User can delete his address by clicking “waste-
basket” button.

Receiver management flow

Receivers is a module that streamlines and automates getting the recipient object to generate a
transaction via Money Transfer Hub. The usefulness of this module takes place in 2 key functions:

e Active users - feature which allow to provide the user with information which contacts
from his personal contact list also use this application. Thanks to this solution, users
maintained within one infrastructure can transfer funds between themselves "to the
telephone number". Receivers which also use the application are marked with the “V”
logo,

e Last used / favorite receivers - feature which allow to store a personal, secure contact
book with cards. Communication between the application and the server after a single
transmission of the encrypted card number takes place later on the basis of unique
identifiers, where the card data itself on the servers are stored and used in accordance
with the PCI DSS standard, ensuring the security of all data entrusted to it.

The pictures below show the user’s contact list:

image-1650456966776.png

In the screen beside user is able to choose transfer receiver from his contact list. Receiver which
uses Money Transfer Application is marked with “V” logo. The user has the option of filtering
potential receivers by entering the receiver’s data (name, surname) or by marking the "V" filter
which means that only active users will be displayed in the contact list. There is also an option to
add new

receiver but clicking “+" button.

The pictures below show the user’s contact list with active filters:

image-1650457156844.png image-1650457164176.png
On the screen above the user’s contact list with active On the screen above the user’s contact list with active
“Money Transfer Application users” filtering has been “Your recipients” filtering has been shown.

shown.


https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650456795698.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650456966776.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650457156844.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650457164176.png

Adding a new receiver can be divided into two cases. New and existing receiver. If a receiver
already exists in user’s list of recipients, an appropriate message is displayed and there is an
option to add another card which will be assigned to him. If receiver does not exist in the user's list
of recipients, the user must assign him a card. In both cases the "Confirm" button remains inactive
until all required fields are completed.

The pictures below show case of adding receiver:

image-1650457330593.png image-1650457336627.png image-1650457341313.png

On the screen above user adds new On the screen above user is informed
receiver by providing necessary data that his new receiver has a card

- first name, last name and phone assigned to him. The user can choose
number with prefix. User can confirm whether he use this card or add new
adding new receiver by clicking the one.

"Confirm" button. The “Confirm”
button remains inactive until all
required fields are correctly filled in.

The pictures below show case of next step of adding receiver (this step occurs only if the user
wants to assign new card to his receiver):

image-1650457428569.png image-1650457435242.png

On the screen above user adds new card to the receiver by providing necessary data - display
name and card number. There is also “Save recipient” checkbox which is responsible for save the
receiver in “favourite ones” list. User can confirm adding new receivers card by clicking the
"Confirm" button. The “Confirm” button remains inactive until all required fields are correctly filled
in.

Transaction flow

The function of this module is to generate a payment transaction from data entered manually by
the user or supplied from other modules such as QR or Friends. Transaction are secured by 3ds
protocol.

Card to card transaction

This module allows you to make a transfer from card to card. The user selects the card which will
be debited and the recipient's card which will be topped up.

The pictures below show “money transfer” view:

image-1650540852315.png image-1650540859358.png image-1650540866062.png


https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650457330593.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650457336627.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650457341313.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650457428569.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650457435242.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650540852315.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650540859358.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650540866062.png

On the screen above user chooses
which of his cards will be debited and
then confirm his choice. Chosen
receiver is shown on the screen.

image-1650541058468.png

On the screen above user is able
confirm the transfer using his
fingerprint or PIN.

On the screen above user chooses
currency and the amount of the
transfer. The transfer button remains
inactive until all required fields are
correctly filled in.

image-1650541065810.png

On the screens above the 3ds
authentication is required to perform
money transfer. Bank sends the

On the screen above user filled in all
required fields and is able to perform
the transfer. In addition the
information about debit amount is
shown.

image-1650541072109.png

authentication code via SMS.

image-1650541140975.png

On the screen above user is informed about the
successfully money transfer. Return button will redirect
the user to the main page.

image-1650541195027.png

On the screen above user is informed about the
unsuccessfully money transfer. In this case user is able to
try again the transfer or return to the main page. Example
reasons of the transaction fail:

e Luck of funds,

 3ds failed,

¢ Invalid card data.

To see the appearance of the QR transaction component from the end user level please visit

QR Payments Application flow

Transaction history flow

In the Payment History section, the user can check the history of his transactions in the application
as well as make statements of charges and credits from given time periods.

The pictures below show some of “payment history” view:

image-1651756901486.png
The picture above shows the contents of the

"Transactions" tab. After entering this tab, the history of all
transactions sorted by the newest and divided per day is
shown to the user.

image-1651756930461.png

On the screen above there is transaction history filtering
option. The user can narrow down the number of results by
selecting different filtering criteria. In the section, there is
also possibility to remove all selected filters by clicking the
"Remove all filters" option.

image-1651756895522.png

The picture above shows the contents of the "Spends" tab.
After entering this tab, a list of all expenses for a given
month is shown to the user, broken down by type of
expense.

image-1651756932836.png

On this screen, the user sees information about which card
the transaction was related to with its thumbnail, who is
the addressee, transaction category, transaction ID, as
well as its status, transaction amount, date and time of the
transfer.


https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650541058468.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650541065810.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650541072109.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650541140975.png
https://developer.verestro.com/uploads/images/gallery/2022-04/image-1650541195027.png
https://developer.verestro.com/uploads/images/gallery/2022-05/image-1651756901486.png
https://developer.verestro.com/uploads/images/gallery/2022-05/image-1651756895522.png
https://developer.verestro.com/uploads/images/gallery/2022-05/image-1651756930461.png
https://developer.verestro.com/uploads/images/gallery/2022-05/image-1651756932836.png
https://developer.verestro.com/books/qr-payments/page/use-cases#bkmrk-%C2%A0-4

Technical Documentation



Technical Documentation

Technical Documentation
API

Money Transfer Hub provides possibility to process Person-2-Person and Person-2-Merchant
transactions in various forms. Please check details in the below documentation.

This documentation contains the methods for mobile-server integration. The methods
included in the documentation are intended for Customers creating their own mobile SDK.

The Customer creating the SDK must also remember about the integration with the

MobileDC component

Documentation for the server-to-server integration is available here but is deprecated.

Receiver types which can be used
to set Receiver.Type

Based on ReceiverType user can fill different field in Receiver object in requests.

ReceiverType Description

BARE_CARD_NUMBER Bare card number in Receiver.card field

FRIEND_ID Should pass Friendld in Receiver.Card field
WALLET_CARD_ID Should pass DataCoreCardld to Receiver.Card field and

UserDataCoreCardld to Receiver.userld field

EMPTY Means that the receiver have the same card data like

sender. This type may be useful on Determine Currency



https://developer.verestro.com/books/user-lifecycle-card-management-api-sdk
https://p2ptransactions.upaidtest.pl/docs/index.html

JWE

Peer To Peer Transaction Service supports encryption of requests and responses as standard JSON
Web Encryption (JWE) per RFC 7516.

Recommended to read the JWE standard: RFC 7516.

Methods that support request encryption in the JWE standard are tagged in the documentation with
the header: Content-Type:application/x-jwe-encryption-body+json. If the response is to be
encrypted with the JWE standard then the header must be added: X-Encryption-Public-Key with the
public key.

Processing requests and responses can be divided into 4 options listed below:

1. Base request — Base response - the following headers should be provided to pass this
case:
e Content-Type: application/json
2. Base request - Encrypted response - the following headers should be provided to pass
this case:
e Content-Type: application/json
3. Encrypted request — Base response - the following headers should be provided to pass
this case:
e Content-Type: application/x-jwe-encryption-body+json
4. Encrypted request —» Encrypted response - the following headers should be provided to
pass this case:
e Content-Type: application/x-jwe-encryption-body+json

Overview

JWE represents encrypted content using JSON data structures and Base64 encoding. The
representation consists of three parts: a JWE Header, a encrypted payload, and a signature. The
three parts are serialized to UTF-8 bytes, then encoded using base64url encoding. The JWE’s
header, payload, and signature are concatenated with periods (.).

JWE typically takes the following form:

{Base64 encoded header}.{Base64 encoded payload}.{Base64 encoded signature}

JWE header contains:

Type Value Constraints Description


https://datatracker.ietf.org/doc/html/rfc7516

alg

enc

typ

iat

kid

RSA-OAEP-256

A256GCM

JOSE

1637929226

5638742a5094327fcd7a59
45d06a45a9d83e9006

Payload Encryption

Required

Required

Optional

Optional

Optional

Identifies the cryptographic
algorithm used to secure
the JWE Encrypted Key.
Supported algorithms:
RSA-OAEP-256, RSA-
OAEP-384, RSA-OAEP-
512. Recommend value:
RSA-OAEP-256.

Identifies the cryptographic
algorithm used to secure
the payload. Supported
algorithms: A128GCM,
A192GCM, A256GCM,
A128CBC-HS256,
A192CBC-HS384,
A256CBC-HS512.
Recommend value:
A256GCM.

Identifies the type of
encrypted payload.
Recommend value: JOSE.

Identifies the time of
generation of the JWT
token. Supported date
format: unix time in UTC. In
the case of iatsend, the
validity of JWE is validated.
Recommend send the
header due to the increase
in the security level.

Identifies the public key of
use to encrypt payload.
Supported format: SHA-1
value of the public key. In
the case of kid send, the
validity of public key is
validated, so we can inform
the client that the public
key has changed.

Every encrypted request should include JWE token. The jwe token should be passed in the field:

value.

In case of problems with the implementation of JWE, please contact the administrator.

To prepare the encrypted payload:

The steps may differ depending on the libraries used.



1. Get the public key using the method: [???](#Get publicKey). The public key is encoded
with Base64.

Decode the public key.

Then create a correct object to be encrypted.

Encrypt the created object with the public key.

Create JWE header compatible with: JWE Header
Make a request on the method that supports JWE. Set the JWE token in the field: value.

Methods supporting JWE use the following header: Content-Type:application/x-jwe-
encryption-body+json.

o v A~ wWwN

Payload Decryption

To prepare the decrypted payload:
The steps may differ depending on the libraries used.

The cryptographic algorithm used to secure the payload is: A256GCM, while to secure the
encrypted JWE key: RSA-OAEP-256.

1. For the response to be encrypted you need to send public key in the header: X-Encryption-
Public-Key. The header value must be encoded Base64.

2. After receiving the response, you should get the JWE token from the field: value.

3. Decrypt the JWE token from the field: value with the private key.

Public key format to be encoded in Base64.

P2P

Every single method should contains Authorization and Mobile-Product headers.

Active Accounts

Method used to find users with valid mc card type (not expired, strong verified). Response will
contain phone numbers with user and card identifiers. Users without accepted TOS or without valid
MC card will not be returned in response. If user has multiple cards that match criteria response



will contain only user’s default card id.

Request

Request headers

Type

Authorization

Product-Name

Content-Type

X-Encryption-Public-Key

Request body with header: X-Encryption-Public-Key

Value

Mobile
bG9naW46YWNrobWU=

TestProduct

application/x-jwe-
encryption-body+json

Request fields

Response

Error response - ERROR_VALIDATION.

HTTP/1.1 400 BAD REQUEST

Content-Type: application/json;charset=UTF-8

X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Constraints

Required

Required

Optional

Optional

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

"traceld": "{{traceld}}",

Description

Device token with "Mobile "
prefix

Application product name

Header must be present if
the request body is
encrypted using the JWE
standard.

Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.



"errorStatus": "ERROR_VALIDATION",
"message": "Some fields are invalid",
"data": [
{
"field": "{{field_name_from_request}}",

"message": "{{message}}"

Error response - ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "ERROR_BAD TOKEN"

Error response - PRODUCT_NOT_FOUND.

HTTP/1.1 404 NOT FOUND

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "PRODUCT_NOT_FOUND",



"message": "Product by name {{product_name}} not found."

Error response - INTERNAL_SERVER_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "INTERNAL_SERVER_ERROR"

Response fields

Errors

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status Error Status Description

400 - Bad Request ERROR_VALIDATION Some fields are invalid

400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token

400 - Bad Request CRYPTOGRAPHY_ERROR Error decoding public key has sent in

header: X-Encryption-Public-Key

400 - Bad Request CRYPTOGRAPHY_ERROR Error on decrypting request

400 - Bad Request CRYPTOGRAPHY_ERROR Error on encrypting response

400 - Bad Request CRYPTOGRAPHY_ERROR JWE encryption Key is invalid

400 - Bad Request CRYPTOGRAPHY_ERROR JWE payload is expired

400 - Bad Request INVALID_PHONE_NUMBERS Phone numbers has incorrect format
404 - Not Found PRODUCT _NOT_FOUND Product not found based on sent

header: Product-Name



500 - Internal Server Error INTERNAL_SERVER_ERROR Internal application error

Examples

Determine currency

Request body with header: X-Encryption-Public-Key.

Method is used to determine currencies applied for given sender and receiver cards.

Request

Receiver.receiverType = WALLET_CARD _ID.

POST /mobile-api/determine-currency HTTP/1.1
Content-Type: application/json

Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name:

Content-Type: application/json

Content-Length: 56

{
"sender": {
"cardld": "219754"
I
"receiver": {
"card": ["2","1","4","4","9","2"],
"userld": "1223",
"receiverType": "WALLET_CARD_ID"
}
}

Receiver.receiverType = FRIEND ID.

POST /mobile-api/determine-currency HTTP/1.1
Content-Type: application/json

Authorization: Mobile bG9nzZW46YWNrbWU=



Product-Name: TestProduct

Content-Length: 56

{
"sender": {
"cardld": "219754"
}
"receiver": {
"userld": "21",
"receiverType": "FRIEND_ID"
}
}

Receiver.receiverType = EMPTY.

POST /mobile-api/determine-currency HTTP/1.1
Content-Type: application/json

Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

{
"sender": {
"cardld": "219754"
I
"receiver": {
"receiverType": "EMPTY"
}
}

Receiver.receiverType = BARE_CARD_NUMBER.

POST /mobile-api/determine-currency HTTP/1.1
Content-Type: application/json

Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

"'sender": {



"cardld": "219754"

h

"receiver": {
"card": ["2","2","2","1","0","0","4","O","7","2","1","9","O","1","8","5"],
"receiverType": "BARE_CARD_NUMBER"

Request headers

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description
Authorization Mobile Required Device token with "Mobile "
bG9naW46YWNrbWU= prefix
Product-Name TestProduct Required Application product name
Content-Type application/x-jwe- Optional Header must be present if
encryption-body+json the request body is
encrypted using the JWE
standard.
X-Encryption-Public-Key Optional Header must be present if

the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Request fields

Response

Error response - ERROR_VALIDATION.

HTTP/1.1 400 BAD REQUEST

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY



"traceld": "{{traceld}}",
"errorStatus": "ERROR_VALIDATION",
"message": "Some fields are invalid",
"data": [
{
"field": "{{field_name_from_request}}",

"message": "{{message}}"

Error response - ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "ERROR_BAD_TOKEN"

Error response - PRODUCT_NOT_FOUND.

HTTP/1.1 404 NOT FOUND

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY



"traceld": "{{traceld}}",
"errorStatus": "PRODUCT_NOT_FOUND",

"message": "Product by name {{product_name}} not found."

Error response - INTERNAL_SERVER_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "INTERNAL_SERVER _ERROR"

Response fields

Errors

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status Error Status Description

400 - Bad Request ERROR_VALIDATION Some fields are invalid

400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token

400 - Bad Request CRYPTOGRAPHY_ERROR Error decoding public key has sent in

header: X-Encryption-Public-Key

400 - Bad Request CRYPTOGRAPHY_ERROR Error on decrypting request
400 - Bad Request CRYPTOGRAPHY_ERROR Error on encrypting response
400 - Bad Request CRYPTOGRAPHY_ERROR JWE encryption Key is invalid

400 - Bad Request CRYPTOGRAPHY_ERROR JWE payload is expired



400 - Bad Request
400 - Bad Request
400 - Bad Request

404 - Not Found

404 - Not Found
404 - Not Found
500 - Internal Server Error
500 - Internal Server Error

500 - Internal Server Error

Examples

ERROR_SENDER_CARD_NOT ACTIVE
ERROR_RECEIVER_CARD_NOT ACTIVE
UNKNOWN_ERROR

PRODUCT_NOT_FOUND

CANT_FIND_CARD
FRIEND_NOT EXISTS
INTERNAL_SERVER_ERROR
ERROR_ON_GETTING_DEFAULT CARD

FENIGE_ERROR

Currency Rate

Request body with header: X-Encryption-Public-Key.

Sender card is not active
Receiver card is not active
Unknown error

Product not found based on sent
header: Product-Name

Not found card

Not found friend

Internal application error
Error on getting card for friend

Fenige error

Method is used for determine currency rate for revaluation from funding to payment (lowerRate)
and payment to funding (higherRate).
Notice that lowerRate is used to transaction processing.

Api Send-money allows users to select the direction of revaluation by providing specify type value

in send-money request.

1 - User by selecting type = SENDER defines amount of funding in given currency. This amount is
collected from sender card in selected currency.
2 - User by selecting type = RECEIVER defines amount of payment in given currency.

This amount is transferred to receiver card in selected currency.In case there’s need revaluation
from one currency to another, system uses lowerRate for situation 1 and higherRate for situation 2

Request

Request headers

Type

Constraints

Request body with header: X-Encryption-Public-Key

Description



Authorization Mobile Required Device token with "Mobile "

bG9naW46YWNrbWU= prefix
Product-Name TestProduct Required Application product name
X-Encryption-Public-Key Optional Header must be present if

the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Response

Error response - ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "ERROR_BAD TOKEN"

Error response - PRODUCT_NOT_FOUND.

HTTP/1.1 404 NOT FOUND

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",



"errorStatus": "PRODUCT_NOT_FOUND",

"message": "Product by name {{product_name}} not found."

Error response - INTERNAL_SERVER_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content-Type: application/json;charset=UTF-8

X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache
Expires: 0
X-Frame-Options: DENY

"traceld": "{{traceld}}",

"errorStatus": "INTERNAL_SERVER_ERROR"

Response fields

Errors

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status
400 - Bad Request

400 - Bad Request

400 - Bad Request
400 - Bad Request
400 - Bad Request

404 - Not Found

500 - Internal Server Error

500 - Internal Server Error

Error Status
ERROR_BAD_TOKEN

CRYPTOGRAPHY_ERROR

CRYPTOGRAPHY_ERROR
CRYPTOGRAPHY_ERROR
CRYPTOGRAPHY_ERROR

PRODUCT_NOT_FOUND

INTERNAL_SERVER_ERROR

FENIGE_ERROR

Description
Invalid authorization token

Error decoding public key has sent in
header: X-Encryption-Public-Key

Error on encrypting response
JWE encryption Key is invalid
JWE payload is expired

Product not found based on sent
header: Product-Name

Internal application error

Fenige error



Examples

Calculate commission

Request body with header: X-Encryption-Public-Key.

This method is used to receive information about the commission that will be charged for the
transaction. Additional description:

e If value the field: "reconciliationType" is "PLUS", the commission during the transaction
will be added to the amount sent (the amount charged from the sender will be increased
by a commission).

e If value the field: "reconciliationType" is "MINUS", then the commission during the
transaction will be deducted from the amount received (the amount that will be received
by the receiver will be reduced by the commission).

e If value the field: "reconciliationType" is "DEPOSITED", the commission during the
transaction will neither be subtracted nor added (the amount to be received by the
receiver is the same as the amount sent).

In addition, the user may specify in the field: type two values SENDER or RECEIVER.

After selecting the value: SENDER, the transaction will be sent in the amount indicated in the field:
amount. Whereas after choosing the value: RECEIVER, the transaction will be received in the
amount indicated in the field: amount. The method allows user to calculate commissions for the
currencies that have been entered.

Request

Receiver.receiverType = WALLET_CARD_ID.

POST /mobile-api/calculate-commission HTTP/1.1
Content-Type: application/json

Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 101

"amount": 200078,
"type": "RECEIVER",
"'sender":{

"cardld":"219834",



“currency":"PLN"

h
"receiver":{
"userld": 2345,
"card": ["2","2","1","2","4","5"],
“currency": "PLN",
"receiverType": "WALLET _CARD_ID"
}
}

Receiver.receiverType = FRIEND_ID.

POST /mobile-api/calculate-commission HTTP/1.1
Content-Type: application/json

Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 101

"amount": 200078,
"type": "RECEIVER",
"sender":{
"cardld":"219834",
"currency":"PLN"
h
"receiver":{
"userld": 2345,
“currency": "PLN",

"receiverType": "FRIEND_ID"

Receiver.receiverType = BARE_CARD_NUMBER.

POST /mobile-api/calculate-commission HTTP/1.1
Content-Type: application/json

Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 101



"amount": 200078,
"type": "RECEIVER",
"'sender":{
"cardld":"219834",
"currency":"PLN"
}

"receiver":{

“Card": ["5","4”,"9“,"5","9",”8“,“4","1","7",“9","0","8","2”,"6“,"4","5"],

"currency": "PLN",

"receiverType": "BARE_CARD_NUMBER"

Request headers

Type

Authorization

Product-Name

Content-Type

X-Encryption-Public-Key

Request body with header: X-Encryption-Public-Key

Value

Mobile
bG9naW46YWNrobWU=

TestProduct

application/x-jwe-
encryption-body+json

Request fields

Response

Error response - ERROR_VALIDATION.

HTTP/1.1 400 BAD REQUEST

Content-Type: application/json;charset=UTF-8

Constraints

Required

Required

Optional

Optional

Description

Device token with "Mobile "
prefix

Application product name

Header must be present if
the request body is
encrypted using the JWE
standard.

Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.



X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

{
"traceld": "{{traceld}}",
"errorStatus": "ERROR_VALIDATION",
"message": "Some fields are invalid",
"data": [
{
"field": "{{field_name_from_request}}",
"message": "{{message}}"
}
]
}

Error response - ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "ERROR_BAD_ TOKEN"

Error response - PRODUCT_NOT_FOUND.

HTTP/1.1 404 NOT FOUND
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff



X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "PRODUCT_NOT_FOUND",

"message": "Product by name {{product_name}} not found."

Error response - INTERNAL_SERVER_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "INTERNAL_SERVER ERROR"

Response fields

Errors

Encrypted response fields when sent header: X-Encryption-Public-Key
Http Status Error Status Description
400 - Bad Request ERROR_VALIDATION Some fields are invalid

400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token



400 - Bad Request

400 - Bad Request
400 - Bad Request
400 - Bad Request
400 - Bad Request

400 - Bad Request
400 - Bad Request
400 - Bad Request

400 - Bad Request
400 - Bad Request
400 - Bad Request

404 - Not Found

404 - Not Found
404 - Not Found
500 - Internal Server Error
500 - Internal Server Error

500 - Internal Server Error

Examples

Send Money

CRYPTOGRAPHY_ERROR

CRYPTOGRAPHY_ERROR
CRYPTOGRAPHY_ERROR
CRYPTOGRAPHY_ERROR
CRYPTOGRAPHY_ERROR

ERROR_WHILE_GETTING_COUNTRY_C
ODE

ERROR_WHILE_GETTING_SENDER_CO
UNTRY_CODE

ERROR_WHILE_GETTING_RECEIVER_C
OUNTRY_CODE

ERROR_SENDER_CARD_NOT ACTIVE
ERROR_RECEIVER_CARD_NOT ACTIVE
UNKNOWN_ERROR

PRODUCT NOT FOUND

CANT_FIND_CARD
FRIEND_NOT _EXISTS
INTERNAL_SERVER_ERROR
ERROR_ON_GETTING_DEFAULT CARD

FENIGE_ERROR

Request body with header: X-Encryption-Public-Key.

Error decoding public key has sent in
header: X-Encryption-Public-Key

Error on decrypting request
Error on encrypting response
JWE encryption Key is invalid
JWE payload is expired

Could not get card country code

Could not get card country code for
sender

Could not get card country code for
receiver

Sender card is not active
Receiver card is not active
Unknown error

Product not found based on sent
header: Product-Name

Not found card

Not found friend

Internal application error
Error on getting card for friend

Fenige error

This method is used to full MoneySend transaction (funding and payment).
Transfers can be make in any currency.
1 - User by selecting type = SENDER defines amount of funding in given currency.

This amount is collected from sender card in selected currency. 2 - User by selecting type =
RECEIVER defines amount of payment in given currency.

This amount is transferred to receiver card in selected currency.



In case there’s need revaluation from one currency to another, system uses lowerRate for situation
1 and higherRate for situation 2. For more details about specific rates please refer to Currency Rate
method.

This method adds friend to sender after successful transaction.

Additionally, you can perform full MoneySend transaction with externalAuthentication (see: ??? and

Authentication)

Request

Receiver.receiverType = WALLET_CARD_ID.

POST /mobile-api/send-money HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

"amount": 1000,

"cvc2": ["1","2","3"],

"type": "RECEIVER",

"addresslp": "192.168.0.1",

"sender": {
"firstName": "Mark",
"lastName": "Wards",
"street": "Olszewskiego",
"houseNumber": "17A",
"city": "Lublin",
"postalCode": "20-400",
"flatNumber": "2",
"email": "senderEmail@fenige.pl",
“currency": "PLN",
"expirationDate": "03/20",
"personalld": "AGC688910",
"cardld": "219708"

}

"receiver": {
"firstName": "Rob",

"lastName": "Wring",



“currency": "PLN",

"card": ["2","1","9","7","0","8"],
"displayName": "Rob W.",
"phoneNumber": "48718222333",
"receiverType": "WALLET _CARD _ID",
"userld": "13001"

Receiver.receiverType = FRIEND_ID.

POST /mobile-api/send-money HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

"amount": 1000,

"cve2": ["1","2","3"],

"type": "RECEIVER",

"addresslp": "192.168.0.1",

"sender": {
"firstName": "Mark",
"lastName": "Wards",
"street": "Olszewskiego",
"houseNumber": "17A",
"city": "Lublin",
"postalCode": "20-400",
"flatNumber": "2",
"email": "senderEmail@fenige.pl",
“currency": "PLN",
"expirationDate": "03/20",
"personalld": "AGC688910",
"cardld": "219708"

h

"receiver": {
"firstName": "Rob",
"lastName": "Wring",

“currency": "PLN",



"displayName": "Rob W.",
"receiverType": "FRIEND_ID",
"userld": "123"

Receiver.receiverType = BARE_CARD _NUMBER.

POST /mobile-api/send-money HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

"amount": 1000,

"cvc2": ["1","2","3"],

"type": "RECEIVER",

"addresslp": "192.168.0.1",

"sender": {
"firstName": "Mark",
"lastName": "Wards",
"street": "Olszewskiego",
"houseNumber": "17A",
"city": "Lublin",
"postalCode": "20-400",
"flatNumber": "2",
"email": "senderEmail@fenige.pl",
“currency": "PLN",
"expirationDate": "03/20",
"personalld": "AGC688910",
"cardld": "219708"

I

"receiver": {
"firstName": "Rob",
"lastName": "Wring",
"currency": "PLN",
"card": ["5","1","4","2","3","3","3","6","2","9","5", 2", 3", 7", 13", 2" ],
"displayName": "displayName",

"phoneNumber": "48299000111",



"receiverType": "BARE_CARD_NUMBER"

ExternalAuthentication.authenticationld.

POST /mobile-api/send-money HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

{
"amount" : 1000,
"cve2" i [ "1", 2", "3" ],
"type" : "RECEIVER",
"addresslp" : "192.168.0.1",
"sender" : {
"firstName" : "Mark",
"lastName" : "Asdasd",
"street" : "Olszewskiego",
"houseNumber" : "17A",
"city" : "Lublin",
"postalCode" : "20-400",
"flatNumber" : "2",
"email" : "senderEmail@fenige.pl",
“currency" : "PLN",
"expirationDate" : "03/20",
"personalld" : "AGC688910",
"cardld" : "219708"
h
"receiver" : {
"firstName" : "Rob",
"lastName" : "Wring",
"currency" : "PLN",
"card" :["2", "1", 9", "7", "0", "8" ],
"displayName" : "displayName",
"phoneNumber" : "phoneNumber",
"receiverType" : "WALLET_CARD_ID",
"userld" : "123"



}
"externalAuthentication" : {
"authenticationld" : "authenticationld"
}
}

ExternalAuthentication.cavv, eci, transactionXld, authenticationStatus.

POST /mobile-api/send-money HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

"amount" : 1000,
"cve2" [ "1, "2", "3,
"type" : "RECEIVER",
"addresslp" : "192.168.0.1",
"sender" : {
"firstName" : "Mark",
"lastName" : "Asdasd",
"street" : "Olszewskiego",
"houseNumber" : "17A",
"city" : "Lublin",
"postalCode" : "20-400",
"flatNumber" : "2",
"email" : "senderEmail@fenige.pl”,
"currency" : "PLN",
"expirationDate" : "03/20",
"personalld" : "AGC688910",
"cardld" : "219708"
}
"receiver" : {
"firstName" : "Rob",
"lastName" : "Wring",
"currency" : "PLN",
"card" :["2", "1", 9", "7", "0", "8" ],
"displayName" : "displayName",

"phoneNumber" : "phoneNumber",



"receiverType" : "WALLET_CARD_ID",

"userld" : "123"
}

"externalAuthentication" : {

"cavv" : "JEu04WZns7pbARAApU4qgNd]Tag",

"eCi" : "PLN",

"authenticationStatus" : "Y",

"transactionXld" : "9742432a-dfdc-41ca-9ae9-b6595de65f1d"

Request headers

Type

Authorization

Product-Name

Content-Type

X-Encryption-Public-Key

Value

Mobile
bG9naW46YWNrbWU=

TestProduct

application/x-jwe-
encryption-body+json

Request fields

Response

Error response - ERROR_VALIDATION.

HTTP/1.1 400 BAD REQUEST

Content-Type: application/json;charset=UTF-8

X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Constraints

Required

Required

Optional

Optional

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache

Description

Device token with "Mobile "
prefix

Application product name

Header must be present if
the request body is
encrypted using the JWE
standard.

Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.



Expires: 0
X-Frame-Options: DENY

{
"traceld": "{{traceld}}",
"errorStatus": "ERROR_VALIDATION",
"message": "Some fields are invalid",
"data": [
{
"field": "{{field_name_from_request}}",
"message": "{{message}}"
}
]
}

Error response - ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "ERROR_BAD_TOKEN"

Error response - PRODUCT_NOT_FOUND.

HTTP/1.1 404 NOT FOUND

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0



X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "PRODUCT _NOT_FOUND",

"message": "Product by name {{product_name}} not found."

Error response - INTERNAL_SERVER_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "INTERNAL_SERVER ERROR"

Response fields

Errors

Encrypted response fields when sent header: X-Encryption-Public-Key

Http Status Error Status Description

400 - Bad Request ERROR_VALIDATION Some fields are invalid

400 - Bad Request ERROR_BAD_TOKEN Invalid authorization token

400 - Bad Request CRYPTOGRAPHY_ERROR Error decoding public key has sent in

header: X-Encryption-Public-Key
400 - Bad Request CRYPTOGRAPHY_ERROR Error on decrypting request
400 - Bad Request CRYPTOGRAPHY_ERROR Error on encrypting response

400 - Bad Request CRYPTOGRAPHY_ERROR JWE encryption Key is invalid



400 - Bad Request CRYPTOGRAPHY_ERROR

400 - Bad Request ERROR_WHILE_GETTING_COUNTRY_C
ODE
400 - Bad Request ERROR_MERCHANT NOT SUPPORT C

ARD_PROVIDER

400 - Bad Request ERROR_SENDER_CARD_NOT_ACTIVE
400 - Bad Request ERROR_RECEIVER_CARD_NOT_ACTIVE
400 - Bad Request ERROR_SENDER_CARD_IS_BLOCKED
400 - Bad Request ERROR_RECEIVER_CARD_IS_BLOCKED
400 - Bad Request UNKNOWN_ERROR

404 - Not Found PRODUCT_NOT_FOUND

404 - Not Found CANT_FIND_CARD

404 - Not Found FRIEND_NOT_EXISTS

500 - Internal Server Error INTERNAL_SERVER_ERROR

500 - Internal Server Error FENIGE_ERROR

500 - Internal Server Error ERROR_ON_GETTING_DEFAULT_CARD

Examples

Add Friend

Request body with header: X-Encryption-Public-Key.

This method allow user to add Friend.

Request

friendType = WALLET.

POST /mobile-api/wallet-users/friends HTTP/1.1
Content-Type: application/json

Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

JWE payload is expired

Could not get card country code

Merchant not support card provider

Sender card is not active
Receiver card is not active
Sender card is blocked
Receiver card is blocked
Unknown error

Product not found based on sent
header: Product-Name

Not found card

Not found friend

Internal application error
Fenige error

Error on getting card for friend



"friendWalletDataCoreld": 1,
"displayName": "Display name",
"phoneNumber": "48999111222",
"friendType": "WALLET",
"firstName": "First",

"lastName": "Last",

friendType = EXTERNAL.

POST /mobile-api/wallet-users/friends HTTP/1.1
Content-Type: application/json

Authorization: Mobile bG9nzZW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 56

"displayName": "Display name",
"phoneNumber": "48999111222",
"friendType": "EXTERNAL",
"firstName": "First",

"lastName": "Last",

"CardNumber": ["5",”5”,”2","7","4",”7”,"9”,"6","6”,”8”,”3","9",”0”,”9”,"5","7"]

Request headers

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description

Authorization Mobile Required Device token with "Mobile "
bG9naW46YWNrbWU= prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-response- Optional Header must be present if
body+json the response body must

have body.



Content-Type application/x-jwe- Optional
encryption-body+json

X-Encryption-Public-Key Optional

Request fields
Response
Response fields

Examples

Get User friends

Request body with header: X-Encryption-Public-Key.

This method allow user to get all his friends

Request

Request headers

Header must be present if
the request body is
encrypted using the JWE
standard.

Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Encrypted request body with header: Content-Type: application/x-jwe-encryption-body+json

Type Value Constraints
Authorization Mobile Required
bG9naW46YWNrbWU=

Product-Name TestProduct Required

Description

Device token with "Mobile
prefix

Application product name



X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Response
Response fields

Examples

Update Friend

Request body with header: X-Encryption-Public-Key.

This method allow user to update friend. For a friend of the type: WALLET, can update only the
field: displayName. For a friend of the type: EXTERNAL, can update the fields: phoneNumber,
displayName, firstName, lastName, cardNumber.

Request

friendType = WALLET.

PUT /mobile-api/wallet-users/friends/24 HTTP/1.1
Content-Type: application/json

Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 101

"displayName":"Display name"

}

friendType = EXTERNAL.



PUT /mobile-api/wallet-users/friends/24 HTTP/1.1
Content-Type: application/json

Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 101

"phoneNumber":"48999000111",
"displayName":"Display name",
"firstName":"First",
"lastName":"Last",

"CardNumbel’":["4","4","4","0","0","0","0","4","4","4","0","4","O"]

Request headers

Encrypted request body with header: Content-Type: application/x-jwe-encryption-body+json

Type Value Constraints Description
Authorization Mobile Required Device token with "Mobile "
bG9naW46YWNrbWU= prefix
Product-Name TestProduct Required Application product name
Content-Type application/x-jwe- Optional Header must be present if
encryption-body+json the request body is
encrypted using the JWE
standard.

Request fields
Response

Examples

Delete friend



Encrypted request body with header: Content-Type: application/x-jwe-encryption-

body+json.

This method allow user to delete friend

Request

Request headers

Type Value

Authorization Mobile
bG9naW46YWNrbWU=

Product-Name TestProduct

Response

Examples

Get publicKey

This method allow user to get publicKey

Request

Request headers

Type Value

Authorization Mobile
bG9naW46YWNrbWU=

Product-Name TestProduct

Constraints

Required

Required

Constraints

Required

Required

Description

Device token with "Mobile "
prefix

Application product name

Description

Device token with "Mobile "
prefix

Application product name



Response
Response fields

Examples

MC Send

Every single method should contains Authorization and Mobile-Product headers.

Master Card Send

Methods allow sending money in MasterCard Send 2.0

Request

Sender.paymentAccountType = WALLET _CARD _ID.

POST /mobile-api/mc-send HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 885

"transactionld" : "bbb8597d-582c-4al2-alc8-be9377aed6f9",
"amount" : 40,
"currency" : "INR",
"sender" : {
"account" : "walletCardId",
"cve2": ["3","2", "1,
"addressid" : "123",
"paymentAccountType" : "WALLET_CARD_ID"



}
"recipient" : {
"name" : "Juniper Jane",
"accountUri" : "402414000000006",
"nationality" : "USA",
"dateOfBirth" : "2011-05-13",
"address" : {
"city" : "Cape Girardeau",
"country" : "USA",
"state" : "MO",
"postalCode" : "23232",
"street" : "Mastercard Blvd"
I
"phone" : "1234567890",
"email" : "jane.doe@mastercard.com",
"governmentlds" : [ "123456789", "123456789" ],

"receiverType" : "BARE_CARD_NUMBER"
b

"qrData" : "12",
"transactionPurpose" : "07",
"additionalMessage" : "message",

"merchantCategoryCode" : "6536"

Sender.paymentAccountType = IBAN_ID.

POST /mobile-api/mc-send HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 885

"transactionld" : "bbb8597d-582c-4al2-alc8-be9377aed6f9",

"amount" : 40,
"currency" : "INR",
"sender" : {
"account" : "ibanld",
"addressid" : "123",

"paymentAccountType" : "IBAN_ID"



}
"recipient" : {
"name" : "Juniper Jane",
"accountUri" : "402414000000006",
"nationality" : "USA",
"dateOfBirth" : "2011-05-13",
"address" : {
"city" : "Cape Girardeau",
"country" : "USA",
"state" : "MO",
"postalCode" : "23232",
"street" : "Mastercard Blvd"
I
"phone" : "1234567890",
"email" : "jane.doe@mastercard.com",
"governmentlds" : [ "123456789", "123456789" ],

"receiverType" : "BARE_CARD_NUMBER"
b

"qrData" : "12",
"transactionPurpose" : "07",
"additionalMessage" : "message",

"merchantCategoryCode" : "6536"

Recipient.receiverType = WALLET_CARD_ID.

POST /mobile-api/mc-send HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 885

"transactionld" : "bbb8597d-582c-4al2-alc8-be9377aed6f9",

"amount" : 40,
"currency" : "INR",
"sender" : {
"account" : "ibanld",
"addressid" : "123",

"paymentAccountType" : "IBAN_ID"



}
"recipient" : {
"name" : "Juniper Jane",
"accountUri" : "4024",
"nationality" : "USA",
"dateOfBirth" : "2011-05-13",
"address" : {
"city" : "Cape Girardeau",
"country" : "USA",
"state" : "MO",
"postalCode" : "23232",
"street" : "Mastercard Blvd"
I
"phone" : "1234567890",
"email" : "jane.doe@mastercard.com",
"governmentlds" : [ "123456789", "123456789" ],
"userld" : 13001,
"receiverType" : "WALLET_CARD_ID"
h
"grData" : "12",
"transactionPurpose" : "07",
"additionalMessage" : "message",

"merchantCategoryCode" : "6536"

Recipient.receiverType = FRIEND_ID.

POST /mobile-api/mc-send HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 885

"transactionld" : "bbb8597d-582c-4al2-alc8-be9377aed6f9",

"amount" : 40,

"currency" : "INR",

"sender" : {
"account" : "ibanld",

"addressld" : "123",



"paymentAccountType" : "IBAN_ID"
h
"recipient" : {
"name" : "Juniper Jane",
"nationality" : "USA",
"dateOfBirth" : "2011-05-13",
"address" : {
"city" : "Cape Girardeau",
"country" : "USA",
"state" : "MO",
"postalCode" : "23232",
"street" : "Mastercard Blvd"
I
"phone" : "1234567890",
"email" : "jane.doe@mastercard.com",

"governmentlds" : [ "123456789", "123456789" ],
"userld" : 13001,

"receiverType" : "FRIEND_ID"
H
"grData" : "12",
"transactionPurpose" : "07",
"additionalMessage" : "message",

"merchantCategoryCode" : "6536"

Recipient.receiverType = BARE_CARD_NUMBER.

POST /mobile-api/mc-send HTTP/1.1
Content-Type: application/json
Authorization: Mobile bG9naW46YWNrbWU=
Product-Name: TestProduct

Content-Length: 885

"transactionld" : "bbb8597d-582c-4al2-alc8-be9377aed6f9",

"amount" : 40,

"currency" : "INR",

"sender" : {
"account" : "ibanld",

"addressld" : "123",



"paymentAccountType" : "IBAN_ID"
h
"recipient" : {
"name" : "Juniper Jane",
"accountUri" : "402414000000006",
"nationality" : "USA",
"dateOfBirth" : "2011-05-13",
"address" : {
"city" : "Cape Girardeau",
"country" : "USA",
"state" : "MO",
"postalCode" : "23232",
"street" : "Mastercard Blvd"
h
"phone" : "1234567890",
"email" : "jane.doe@mastercard.com",
"governmentlds" : [ "123456789", "123456789" ],
"receiverType" : "BARE_CARD_NUMBER"
h
"grData" : "12",
"transactionPurpose" : "07",
"additionalMessage" : "message",

"merchantCategoryCode" : "6536"

Request headers

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description

Authorization Mobile Required Device token with "Mobile "
bG9naW46YWNrbWU= prefix

Product-Name TestProduct Required Application product name

Content-Type application/x-jwe- Optional Header must be present if
encryption-body+json the request body is

encrypted using the JWE
standard.



X-Encryption-Public-Key Optional Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Request fields

Response

errorStatus = INVALID_INPUT_FORMAT.

HTTP/1.1 400 BAD REQUEST

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "b4ce7ad5-758d-444f-90b3-ffbadb757e3f",
"errorStatus": "INVALID_INPUT_FORMAT",
"message": "Invalid Format",
"data": {

"error": [

{

"source": "recipient.accountURI.Expiration date",
"reasonCode": "INVALID_INPUT_FORMAT",
"errorDetailCode": "062000",

"description": "Invalid Format"

A formal table with Reason Code

Error Detail Code Reason Code Description



062000 INVALID_INPUT_FORMAT Value contains invalid character

072000 INVALID_INPUT_LENGTH Invalid length

082000 INVALID_INPUT_VALUE Invalid value

092000 MISSING_REQUIRED_INPUT Value is required

110501 RESOURCE_ERROR Duplicate value

110503 RESOURCE_ERROR Account not eligible

110505 RESOURCE_ERROR Invalid currency

110507 RESOURCE_UNKNOWN Record not found

110510 RESOURCE_ERROR Invalid Request

110537 RESOURCE_ERROR Value is not supported for the
merchant

130004 DECLINE Per transaction maximum amount
limit reached

130006 DECLINE Transaction Limit is less than the

minimum configured for the partner

130010 DECLINE Partner not onboarded for the
network to reach the account

errorStatus = ERROR_BAD_TOKEN.

HTTP/1.1 400 BAD REQUEST

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "{{traceld}}",
"errorStatus": "ERROR_BAD TOKEN"

errorStatus = CANT_FIND PAYMENT TOKEN.

HTTP/1.1 404 NOT FOUND
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff



X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

{
"traceld": "89cdfc2b-346e-42d0-b20d-f3afa0lcec68",
"errorStatus": "CANT_FIND_PAYMENT TOKEN",
"message": "Payment token with given id was not found"
}

errorStatus = SYSTEM_ERROR.

HTTP/1.1 500 INTERNAL SERVER ERROR

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"traceld": "1c8d4f1f-16db-4c43-bdce-0fe43ae39195",
"errorStatus": "SYSTEM_ERROR",
"message": "Internal exception occurred.",
"data": {
"error": [
{
"source": "SYSTEM",
"reasonCode": "SYSTEM_ERROR",
"errorDetailCode": null,

"description": "Internal exception occurred."



Response fields

Examples

Authentication

Every single method should contains Authorization and Mobile-Product headers.

Init Authentication

The authentication stage flow is indicated by the following field: threeDsMode
Method allows us to do initialize authentication using ThreeDs 2.0 protocol.
After this method you have 3 options:

e FRICTIONLESS - In response: authenticationStatus, transactionXld, cavv, eci and
threeDsMode = FRICTIONLESS are present. This response denotes that authentication
was finished.

e ThreeDsMethod flow - In response: threeDsMethodData and threeDsMode =
THREE_DS_METHOD are present. This response denotes that you should perform
ThreeDs method flow. After executing ThreeDs method flow, make a request for the

method: Continue Authentication
e CHALLENGE - In response: acsUrl, creq, challengeHtmIFormBase64 and threeDsMode =
CHALLENGE are present. This response denotes that you should perform challenge. After

executing challenge, make a request for the method: Finalize Authentication

Request

Request headers

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description



Authorization Mobile Required
bG9naW46YWNrbwuU=

Product-Name TestProduct Required

Content-Type application/x-jwe- Optional

encryption-body+json

X-Encryption-Public-Key Optional

Request fields

Response

threeDsMode = FRICTIONLESS.

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"authenticationld": "authenticationld",
"authenticationStatus": "Y",

"transactionXld": "9742432a-dfdc-41ca-9ae9-b6595de65f1d",
"cavv": "JEU04WZns7pbARAApU4qgNd]Tag",

"eci": "02",

"threeDsMode": "FRICTIONLESS"

threeDsMode = THREE_DS_METHOD.

Device token with "Mobile "
prefix

Application product name

Header must be present if
the request body is
encrypted using the JWE
standard.

Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.



HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"authenticationld": "authenticationld",

"threeDsMethodData":
"eyJO0aHJIZURWZpY2F0aW9uVV]MljoiaHROCHM6Ly93ZWJob29rLnNpdGUvc3MiLCJOaHJIZURTU2VydmVyVH]hbnNJR
CI6IINmMYWYWZjFZiliYjQyLThkN2RhM2MONjY50SJ9",

"threeDsMethodUrl": "https://threeDsMethodUrl-test.verestro.com/acs-mock",

"threeDsMode": "THREE_DS_METHOD"

threeDsMode = CHALLENGE.

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"authenticationld": "authenticationld",

"acsUrl": "https://acs-url.verestro.com/mock-acs”,

"creq™:
"ey]jYXJkQXV0aGVudGljYNmODIhLTk2MjQtNGQ10S04NzZmLTNKkMWViYTcyNzM3Nilsim5vdGlmaWNhdGlvbIVybvd
2ViaG9vay5zaXRILzZE50DI3MWMyLTIj)YWYtNGEyMy05ZGJiLWRIZTc30DExMDdIOSIsInRocmVIRFNTZXJ2ZXJUcmFuc
OIEIjoiM2ZhZjBmMWQtM2YxNyOOMT)JmLW]JiNDItOGQ3ZGEzYzQ2Njk5liwibWVzc2FnZVZIcnNpb24iOilyLjEuMCJ9",

"challengeHtmIFormBase64":
"PGhObWw+PFNDUkIQVCBMQUS5mMF2YXNjcmIwdCl4+ZnVuY3Rpb24gT25Mb2FKkRXZIbW1lbnQuZG93bmxvYWRGb3)
tLnN1Ym1pdCgpOyBOPCITQLJJUFQ+PGJvZHkgT25Mb2FkmVudCgpOyl+PGZvem0OgbmFtZT0iZG93bmxvYWRGh3)t
1iBhY3Rpb249Imh0dHBzOi8vbXBpLXNOYWdpbmcuZmVuaWdILnBsL21vY2stYWNzliBtZXRob2Q9IIBPU1QiPjxJTIBVV



CB0eXBIPSJoaWRkZW4iXEilHZhbHVIPS]leUpgWVhKalFYVjBhR1Z1ZEdsallYUnBiMjVKWKNJNkItRmpZbU5tTORsaEx
UazJNalFOTkdRMU9TMDROelptTFROa01XVmIZVGN5TnpNMO5pSXNJbTV2ZEdsbWFXTmhkR2x2YmxWeW]DSTZ]bW
gwZEhCek9pOHZKMIZpYUc5dmF5NXphWFJsTHpFNU9ESTNNVO15TFRsallXWXROROV5TXkwNVpHSmMIMV1)sWIRjM
09ERXhNRGRsT1NJcOluUm9jbVZsUkZOVFpYSjjaWEpVY21GdWMwbEV]Jam9pTTJaaFpgQm1NV1FOTT)ZeES5MDBNV
EptTFdKaU5ESXRPR1EzWkdFell6UTJOams1SWI3aW)XVnpjMkZuWIZabGNuTnBiMjRpT2lJeUxqRXVNQO051j485U5Q
VVQgdHIwZT0iaGlkZGVuliBuYW1IPS)0aHJIZURTU2Vzc2IvbkRhdGEiIHZhbHVIPSJZVO5pWTJZNE9XRXRPVFISTkKMwM
FPEVTVMVGczTm1ZdEOyUXhaVOpoTnp)M016YzIiPjwvZm9ybT48L2JvZHk+PC90dG1lsPg==",

"threeDsSessionData": "YWNiY2Y4OWEtONCO0ZDUS5LTg3NmMYtM2QxZWJhNzI3Mzc2",

"threeDsMode": "CHALLENGE"

Response fields

Base response fields

Path Type Description

authenticationld String Unique authentication identifier
threeDsMethodData String Encoded data used for request to ACS
threeDsMethodUrl String ACS endpoint for hidden request. If

endpoint is not present then request
is not required.



authenticationStatus

transactionXId

cavv

eci

String

String

String

String

Indicates whether a transaction
qualifies as an authenticated
transaction or account verification.
Possible values are:

Y - Authentication/account verification
successful

N - Not authenticated/account not
verified; transaction denied

U - Authentication/account
verification could not be performed;
technical or other problem as
indicated in ARes or RReq

A - Attempts processing performed;
not authenticated/verified, but a proof
of attempted
authentication/verification is provided
C - Challenge required; additional
authentication is required using the
CReq/CRes

R - Authentication/account verification
rejected; issuer is rejecting
authentication/verification and
request that authorization not be
attempted

D - Challenge required; decoupled
authentication confirmed

I - Informational only; ThreeDs
Requestor challenge preference
acknowledged

The CRes message can contain only a
value of Y or N. Values of D and | are
only applicable for ThreeDs version
2.2.0.

This field indicates the transactionXid
from recurring initial authentication.

This property is determined by the
Access Control Server. This property
will be valid if the TransactionStatus is
"Y" or "A". The value may be used to
provide proof of authentication.

This property is determined by the
Access Control Server. This property
contains the two digit Electronic
Commerce Indicator (ECI) value,
which is to be submitted in a credit
card authorization message. This
value indicates to the processor that
the customer data in the authorization
message has been authenticated. The
data contained within this property is
only valid if the TransactionStatus is
"Y" or "A".



acsUrl
creq
challengeHtmIFormBase64

threeDsSessionData

threeDsMode

Examples

Errors

Http Status

400 - Bad Request

400 - Bad Request

String

String

String

String

String

Error Status

PROCESS_NOT_ALLOWED

ERROR_SENDER_CARD_NOT ACTIVE

If challenge is required, data for
building a form such as
challengeHtmIFormBase64

If challenge is required, data for
building a form such as
challengeHtmIFormBase64

This field is a BASE64 encrypted html
source file containing the challenge 3-
D Secure frame

ThreeDsSessionData value

ThreeDs process mode which informs
about. One of: [FRICTIONLESS,
THREE_DS_METHOD, CHALLENGE]
FRICTIONLESS - this is where the
authentication process was finished.
THREE_DS_METHOD - next step is to
execute the ThreeDs method process.
After it is done, we need to make a

request to the method: Continue

Authentication

CHALLENGE - next step is to execute
the challenge process. After it is done,
we need to make a request to the

method: Finalize Authentication

Request body with header: X-Encryption-Public-Key

Description

Method not allowed - invoke calculate
commission method is necessary first.

Sender card is not active

Continue Authentication

The authentication stage flow is indicated by the following field: threeDsMode

Method allows us to do continue authentication using ThreeDs 2.0 protocol. Use this method after
perform process ThreeDsMethod. This step is optional in the authentication process. Required only



if ThreeDsMethod case is present.
After this method you have 2 options:

e FRICTIONLESS - In response: authenticationStatus, transactionXld, cavv, eci and
threeDsMode = FRICTIONLESS are present. This response denotes that authentication
was finished.

e CHALLENGE - In response: acsUrl, creq, challengeHtmIFormBase64 and threeDsMode =
CHALLENGE are present. This response denotes that you should perform challenge. After

executing challenge, make a request for the method: Finalize Authentication

Request

Request headers

Request body with header: X-Encryption-Public-Key

Type Value Constraints Description
Authorization Mobile Required Device token with "Mobile "
bG9naW46YWNrbWU= prefix
Product-Name TestProduct Required Application product name
Content-Type application/x-jwe- Optional Header must be present if
encryption-body+json the request body is
encrypted using the JWE
standard.
X-Encryption-Public-Key Optional Header must be present if

the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Base64.

Request fields

Response

threeDsMode = FRICTIONLESS.

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff



X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"authenticationld": "authenticationld",
"authenticationStatus": "Y",

"transactionXld": "9742432a-dfdc-41ca-9ae9-b6595de65f1d",
"cavv": "JEU04WZns7pbARAApU4qgNd]Tag",

"eci": "02",

"threeDsMode": "FRICTIONLESS"

threeDsMode = CHALLENGE.

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: 0

X-Frame-Options: DENY

"authenticationld": "authenticationld",

"acsUrl": "https://acs-url.verestro.com/mock-acs",

"creq":
"ey)jYXJkQXV0aGVudGljYNmODIhLTk2MjQtNGQ10S04NzZmLTNKkMWViYTcyNzM3Nilsim5vdGlmaWNhdGlvbIVybvd
2ViaG9vay5zaXRILzZE50DI3MWMyLTIj)YWYtNGEyMy05ZGJiLWRIZTc30DExMDdIOSIsInRocmVIRFNTZXJ2ZXJUcmFuc
OIEIjoiM2ZhZjBmMWQtM2YxNyOOMT)]mLW]JiNDItOGQ3ZGEzYzQ2Njk5liwibWVzc2FnZVZIcnNpb24iOilyLjEuMCJ9",

"challengeHtmIFormBase64":
"PGhObWw+PFNDUkIQVCBMQUS5mMF2YXNjcmIwdCl+ZnVuY3Rpb24gT25Mb2FKkRXZIbW1lbnQuZG93bmxvYWRGb3)
tLnN1Ym1pdCgpOyBIPCITQLJJUFQ+PGJvZHkgT25Mb2FkmVudCgpOyl+PGZvem0OgbmFtZT0iZG93bmxvYWRGh3)t
1iBhY3Rpb249Imh0dHBzOi8vbXBpLXNOYWdpbmcuZmVuaWdILnBsL21vY2stYWNzliBtZXRob2Q9IIBPU1QiPjxJTIBVV
CB0eXBIPSJoaWRkZW4iXEilHZhbHVIPSJleUpgWVhKalFYVjBhR1Z1ZEdsallYUnBiMjVKWKNJNkItERmpZbU5tTORsaEx
UazJNalFOTkdRMU9TMDROelptTFROa01XVmIZVGN5TnpNMO5pSXNJbTV2ZEdsbWFXTmhkR2x2YmxWeW)]DSTZ]bW
gWZEhCek9pOHZkMIZpYUc5dmF5NXphWF)sTHpFNU9ESTNNVO15TFRsallXWXROROV5TXkwNVpHSmMIMV1)sWIRjM



09ERXhNRGRST1NJcOluUmM9jbVZsUkZOVFpYSjJaWEpVY21GdWMwbEV)am9pTTjaaFpgQm1NV1FOTTJZeE55MDBNV
EptTFdKaUSESXRPR1EzWkdFell6UTJOams1SWI3aWJXVnpjMkZuWIZabGNuTnBiMjRpT2lJeUxgRXVNQO0051j485SU5Q
VVQgdHIwZT0iaGlkZGVuliBuYW1IPS)J0aH)IZURTU2Vzc2IvbkRhdGEiIIHZhbHVIPS)ZVO5pWTJZNE9XRXRPVFISTkMwM
FPEVTVMVGczTm1ZdEOyUXhaVOpoTnpJM016YzliPjwvZm9ybT48L2)vZHk+PC90dG1lsPg==",
"threeDsSessionData": "YWNiY2Y4OWEtONC00ZDU5LTg3NmMYtM2QxZW)hNzI3Mzc2",
"threeDsMode": "CHALLENGE"

Response fields

Base response fields

Path Type Description
authenticationld String Unique authentication identifier
authenticationStatus String Indicates whether a transaction

qualifies as an authenticated
transaction or account verification.
Possible values are:

Y - Authentication/account verification
successful

N - Not authenticated/account not
verified; transaction denied

U - Authentication/account
verification could not be performed;
technical or other problem as
indicated in ARes or RReq

A - Attempts processing performed;
not authenticated/verified, but a proof
of attempted
authentication/verification is provided
C - Challenge required; additional
authentication is required using the
CReq/CRes

R - Authentication/account verification
rejected; issuer is rejecting
authentication/verification and
request that authorization not be
attempted

D - Challenge required; decoupled
authentication confirmed

I - Informational only; ThreeDs
Requestor challenge preference
acknowledged

The CRes message can contain only a
value of Y or N. Values of D and | are
only applicable for ThreeDs version
2.2.0.

transactionXId String This field indicates the transactionXid
from recurring initial authentication.



cavv

eci

acsUrl
creq
challengeHtmIFormBase64

threeDsSessionData

threeDsMode

Examples

Finalize Authentication

Request body with header: X-Encryption-Public-Key.

String

String

String

String

String

String

String

This property is determined by the
Access Control Server. This property
will be valid if the TransactionStatus is
"Y" or "A". The value may be used to
provide proof of authentication.

This property is determined by the
Access Control Server. This property
contains the two digit Electronic
Commerce Indicator (ECI) value,
which is to be submitted in a credit
card authorization message. This
value indicates to the processor that
the customer data in the authorization
message has been authenticated. The
data contained within this property is
only valid if the TransactionStatus is
"Y" or "A".

If challenge is required, data for
building a form such as
challengeHtmIFormBase64

If challenge is required, data for
building a form such as
challengeHtmIFormBase64

This field is a BASE64 encrypted html
source file containing the challenge 3-
D Secure frame

ThreeDsSessionData value

ThreeDs process mode which informs
about. One of: [FRICTIONLESS,
CHALLENGE]

FRICTIONLESS - this is where the
authentication process was finished.
CHALLENGE - next step is to execute
the challenge process. After it is done,
we need to make a request to the

method: Finalize Authentication

Method allows us to do finalize authentication using ThreeDs 2.0 protocol.



Request

Request headers

Type

Authorization

Product-Name

Content-Type

X-Encryption-Public-Key

Value

Mobile
bG9naW46YWNrbWU=

TestProduct

application/x-jwe-
encryption-body+json

Request fields

Response

Response fields

Path

authenticationld

Request body with header: X-Encryption-Public-Key

Constraints

Required

Required

Optional

Optional

Base response fields

Type

String

Description

Device token with "Mobile "
prefix

Application product name

Header must be present if
the request body is
encrypted using the JWE
standard.

Header must be present if
the response body is to be
encrypted using the JWE
standard. Public key must
be encoded Baseb4.

Description

Unique authentication identifier



authenticationStatus

transactionXId

cavv

eci

String

String

String

String

Indicates whether a transaction
qualifies as an authenticated
transaction or account verification.
Possible values are:

Y - Authentication/account verification
successful

N - Not authenticated/account not
verified; transaction denied

U - Authentication/account
verification could not be performed;
technical or other problem as
indicated in ARes or RReq

A - Attempts processing performed;
not authenticated/verified, but a proof
of attempted
authentication/verification is provided
C - Challenge required; additional
authentication is required using the
CReq/CRes

R - Authentication/account verification
rejected; issuer is rejecting
authentication/verification and
request that authorization not be
attempted

D - Challenge required; decoupled
authentication confirmed

I - Informational only; ThreeDs
Requestor challenge preference
acknowledged

The CRes message can contain only a
value of Y or N. Values of D and | are
only applicable for ThreeDs version
2.2.0.

This field indicates the transactionXid
from recurring initial authentication.

This property is determined by the
Access Control Server. This property
will be valid if the TransactionStatus is
"Y" or "A". The value may be used to
provide proof of authentication.

This property is determined by the
Access Control Server. This property
contains the two digit Electronic
Commerce Indicator (ECI) value,
which is to be submitted in a credit
card authorization message. This
value indicates to the processor that
the customer data in the authorization
message has been authenticated. The
data contained within this property is
only valid if the TransactionStatus is
"Y" or "A".



Examples



Technical Documentation

SDK documentation Android

The Money Transfer Android SDK specification is divided into 3 main components (SDK's) listed in
table below:

This SDK is responsible for managing recipients

Receivers
Transfers This SDK is responsible for managing money transfer
QR This SDK is responsible for processing and generating QR

codes


https://developer-android.verestro.com/receiverssdk/1.0.0/documentation/
https://developer-android.verestro.com/transferssdk/1.0.0/documentation/
https://developer-android.verestro.com/qrsdk/1.0.0/documentation/

Technical Documentation

SDK documentation 10S

The Money Transfer iOS SDK specification is divided into 3 main components (SDK's) listed in table
below:

This SDK is responsible for managing recipients

Receivers
Transfers This SDK is responsible for managing money transfer
QR This SDK is responsible for processing and generating QR

codes


https://eclectic-granita-71de66.netlify.app/documentation/
https://heartfelt-scone-7e11ac.netlify.app/documentation/
https://cheerful-cajeta-2034e2.netlify.app/documentation/

